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ABSTRACT 

Researchers study relationships between variables in scientific research as a means to accurate pre-

diction and control. We need a measure of the weight of evidence that a relationship between vari-

ables (or other effect) observed in the data from a sample is a real (i.e., reproducible) effect in the 

entities in the underlying population. This paper compares nine measures of the weight of evidence 

that an effect is real (p-value, t-statistic, confidence interval, likelihood ratio, Bayes factor, posterior 

probability that the null hypothesis is true, second-generation p-value, D-value, and information 

criteria). The comparisons suggest that the p-value is slightly better than the other measures for 

detecting relationships between variables (or other effects) in populations in scientific research.  

KEYWORDS: Hypothesis testing; Significance testing; Statistical inference; Role of statistics in 

scientific research 

1. Introduction 

Scientific researchers often study relationships between vari-

ables in entities in populations of entities. We study a rela-

tionship by first selecting a reasonable sample of entities from 

the population. Then we determine whether a chosen response 

variable, 𝑦, measured in each entity in the sample, “depends” 

on one or more chosen predictor variables, 𝑥, also measured 

in each entity. If we do this properly, it enables us to infer 

from the sample whether the relationship of interest exists be-

tween the variables in the population behind the sample.  

We study relationships between variables because if we 

can find a useful new relationship, then we can use our 

knowledge of the relationship to predict or control the value 

of the response variable for new entities from the population. 

The ability to predict or control variables (properties of enti-

ties) is often useful in a social, theoretical, or commercial 
sense.  

For example, medical researchers study relationships be-

tween variables in populations of medical patients. If a medi-

cal researcher can find good evidence of a useful (causal) re-

lationship between a medical treatment variable, 𝑥, and a 

measure of patients’ health, 𝑦, then (after the relationship has 

been confirmed in independent research) medical doctors can 

use the knowledge of the relationship to improve the health of 

new patients from the population. 

More generally, a relationship between variables is one 
type of “effect” that we can study in data in scientific research. 

Most effects can be viewed as (aspects of) relationships be-

tween variables. However, we keep the term “effect” because 

it is shorter and more general. 

A key question in studying any relationship between var-

iables (or other effect) is whether the relationship actually ex-

ists in the population—whether it is real (i.e., reproducible). 

This is important because we often find in scientific research 

that a potentially useful relationship between variables appar-

ently doesn’t exist in the population. (Or at least it doesn’t 

exist strongly enough to be reliably detected by our current 

measurement methods.) If we have no good evidence that a 

certain relationship between variables exists, then it is a waste 

of resources to think or act as if the relationship does exist.  

This paper discusses some basic principles and nine relia-

ble measures to help researchers to detect relationships be-

tween variables in populations of entities. There is substantial 
controversy about the usefulness of these ideas, with the at-

tention mostly focused on the p-value, which is the most pop-

ular of the nine measures. The controversy arises because the 

role of the ideas in scientific research is often misunderstood.  

The controversy has led the American Statistical Associa-

tion (ASA) to publish a careful position paper on p-values ti-

tled “ASA Statement on Statistical Significance and P-Val-

ues”. The Introduction section of the statement says that:  

While the p-value can be a useful statistical measure, 

it is commonly misused and misinterpreted (Wasser-

stein 2016, p. 131). 

The main part of the ASA statement gives six widely agreed 
upon principles that underlie the proper use and interpretation 

of the p-value in scientific research. These important princi-

ples are each discussed later below.  

The fact that the p-value (and the eight other measures) is 

commonly misused and misinterpreted together with per-

ceived logical problems with the measures has led some stat-

isticians to recommend that we reduce our reliance on the 

measures by abandoning the use of critical values (thresholds) 

for the measures (McShane, Gal, Gelman, Robert, and Tack-

ett, 2018). However, these statisticians have failed to present 

a viable alternative approach for what is arguably a necessary 
function in scientific research. The function is to provide a 

reliable way to distinguish the signal we seek (typically a sig-

nal that a relationship exists between variables) from the in-

evitable noise in the data. This function is important because 

we don’t want to draw scientific conclusions from mere noise 

in data. If we omit using any of the nine measures with a crit-

ical value, then how can we reliably and efficiently distin-

guish likely real effects from likely noise in data?  
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Some less experienced people think that the nine measures 

somehow decide whether relationships exist between varia-

bles, which is a fundamental error. The correct interpretation 

is that the measures help the relevant research community 

(e.g., experimental psychologists) to decide.  
This paper focuses on the role or function of the nine 

measures in scientific research. This leads to discussion of 

some basic principles of scientific research. To establish a 

solid foundation, the paper also discusses some basic princi-

ples of statistics. To reinforce the ideas for less experienced 

readers, the paper gives various examples.  

The paper illustrates how it is possible to discuss the role 

or function of the measures of the weight of evidence in sci-

entific research with only passing reference to the highly im-

portant underlying mathematics. This is possible because the 

function of the measures (i.e., to help us to detect relationships 

between variables) isn’t directly mathematical. The mathe-
matics serves to support the scientific function. (The mathe-

matics does this extremely well due to its unlimited flexibility 

and generality.) 

A focus on function together with omission of the mathe-

matical details and inclusion of basic ideas and examples 

makes the ideas easier for less experienced people to under-

stand. Given the broad misuse and misinterpretation of the 

ideas, focusing on the function and the basic ideas is a sensi-

ble approach. 

The paper proceeds as follows: Section 2 describes the 

roles of the “research” and “null” hypotheses in detecting re-
lationships between variables in scientific research. Section 3 

explains how researchers use a measure of the “weight of ev-

idence” to attempt to “reject” the null hypothesis and con-

clude that a relationship exists between the studied variables. 

Section 4 discusses two serious but controllable errors that the 

measures of the weight of evidence sometimes make. Section 

5 explains the functional operation of each of nine popular 

measures of the weight of evidence that a relationship exists 

between variables. Section 6 compares the nine measures on 

relevant attributes. Section 7 gives conclusions. 

2. Statistical Hypothesis Tests to Detect 
Relationships 

A sensible way to detect a relationship between variables is to 

perform a statistical hypothesis test. We begin the test by stat-

ing (at least implicitly) two mutually exclusive and exhaustive 

hypotheses—the “research” hypothesis and the “null” hy-

pothesis. The research hypothesis says that a relationship ex-

ists between a specified predictor variable (𝑥) and the re-

sponse variable (𝑦) in the entities in the population. In con-

trast, the null hypothesis says that no relationship exists be-

tween 𝑥 and 𝑦 in the entities. 
For example, if we are studying the relationship between 

physical exercise and heart health in people, then the research 

hypothesis says that there is a relationship between physical 

exercise and heart health in the studied population of people. 

In contrast, the null hypothesis says that there is no relation-

ship between the two variables in the population. 

More generally, a research hypothesis may say that a rela-

tionship exists between a specified set of multiple predictor 

variables, 𝑥 (now a vector of variables), and the response var-

iable, 𝑦, in the entities in the population.  

Some statisticians refer to a research hypothesis in a sci-

entific research project as the “alternative” or “alternate” hy-
pothesis. However, those terms are inappropriate because 

they incorrectly suggest that the research hypothesis is subor-

dinate to the null hypothesis. Clearly, it is the null hypothesis 

that is subordinate because it is merely an empty starting point 

that we hope to escape from. The research hypothesis is the 

essential idea because it is what we hope to prove is true. 

The scientific principle of parsimony tells us to keep our 

ideas as simple as possible while remaining consistent with 

the known facts (Baker, 2016). The null hypothesis is simpler 

than the research hypothesis because the null hypothesis has 

fewer details. Therefore, the standard approach is to begin the 
study of a new relationship between variables with the as-

sumption that the null hypothesis is true. That is, we begin 

with the formal assumption that there is no relationship what-

ever between the variables of interest.  

Of course, informally we usually strongly believe (hope) 

the opposite—we believe that the research hypothesis is true. 

We believe that the research hypothesis is true because that is 

why we are doing the research—we want (among other 

things) to demonstrate that our carefully chosen research hy-

pothesis is true in the population because that will usefully 

advance human knowledge. 

After formally assuming that the null hypothesis is true, 
we perform a scientific research project to see if we can find 

good evidence to enable us to “reject” the null hypothesis. We 

(a) select a sample of entities from the population, (b) measure 

the values of the same relevant variables in each entity in the 

sample, (c) collect the measured values in a data table, and (d) 

detect a relationship between the variables by examining the 

data to see if there is good evidence that the relationship ex-

ists. If we can find good evidence of the relationship in the 

sample data, and if we have done everything properly, this 

enables us to reject the null hypothesis and to (tentatively) de-

cide that the relationship exists in the population.  
Some statisticians believe that the null hypothesis is never 

precisely true in scientific research, as discussed in appendix 

B.12. However, regardless of whether these statisticians are 

correct in their belief, statistical hypothesis testing is still sen-

sible, as discussed in appendix C. 

3. Hypothesis Testing Methods 

Statisticians have invented nine sensible methods to help us 

to examine appropriate research data to determine whether we 

have enough evidence to reject the null hypothesis and (ten-

tatively) conclude that a relationship exists between the stud-

ied variables. The present section and the next section discuss 

some general principles behind the methods to prepare for 
separate discussion of each method in section 5. 

All the methods work by (in effect) computing a measure 

of the weight of evidence that the relationship of interest ex-

ists. The lower (or, for some measures, the higher) the com-

puted value of the measure for a given data table, the more 

evidence we have from the data that the studied relationship 
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exists in the population—the more evidence we have that the 

relationship is real.  

For example, the p-value is designed so that if certain rea-

sonable assumptions are adequately satisfied, then the lower 

the p-value that is computed from a data table, the greater the 
weight of evidence in the data that the studied relationship be-

tween the variables is real. Thus we can compute a p-value 

for a relationship between variables from a data table. And if 

the p-value is low enough, and if there is no reasonable alter-

native explanation for the low p-value, then we can conclude 

that we have good evidence that the studied relationship exists 

between the variables in entities in the population—good ev-

idence that the relationship is real.  

Researchers have sensibly defined so-called “critical val-

ues” for many of the measures. If the value of a measure of 

the weight of evidence falls beyond (or is equal to) the critical 

value, then this is called a positive result. For example, if the 
p-value obtained in a statistical test in a research project is less 

than (or equal to) a critical value (often 0.05), this is a positive 

result. A positive result implies (in the absence of a reasonable 

alternative explanation) that we have found good evidence of 

a relationship between the studied variables (or good evidence 

of some other studied effect). Scientific journals are eager to 

publish interesting properly-obtained positive results about 

new relationships between variables. 

In contrast, if the value of a measure of the weight of evi-

dence doesn’t fall beyond the critical value, then this is called 

a negative result. A negative result is almost always disap-
pointing for a researcher because it implies that the research 

has failed to find good evidence of the sought-after relation-

ship between the variables. Scientific journals are rarely in-

terested in publishing negative results because these results 

usually don’t tell us anything beyond what we have already 

assumed to be true. 

Some people refer to the fact that scientific journals gen-

erally only publish positive results as “publication bias”. This 

reflects the fact that these people believe that all research re-

sults (positive and negative) should be published. However, 

negative results generally aren’t published because readers 

generally aren’t interested in reading about effects that may 
reflect mere noise in the data. Readers generally don’t have 

time for that. Positive results are much more interesting be-

cause they tell us about relationships between variables. Neg-

ative results tell us little beyond the fact that the research pro-

ject failed to find what it was looking for. Appendices K and 

L in the supplementary material discuss some special cases 

when negative results are interesting. 

Appendix G in the supplementary material discusses a 

case of a study of a relationship between variables when we 

don’t need a measure of the weight of evidence that the rela-

tionship is real. 
A given research community (e.g., medical researchers) 

chooses the critical value for a measure of the weight of evi-

dence based on a sense that the chosen critical value maxim-

izes the long-term payoff of scientific research in the commu-

nity. These ideas are further discussed in the next section. 

The critical values that are chosen by a research commu-

nity are reflected in the editorial policies of the community’s 

journals. That is, the editor of a journal might specify that the 

p-value for the main research finding in a paper submitted to 

the journal must be less than or equal to the critical value of 

0.05 before the journal will view the results as being convinc-

ing enough to consider the paper for publication. (Higher-

prestige journals often use the stricter critical p-value of 0.01.) 
Similarly, an editor of a Bayesian journal might specify that 

the Bayes factor for the main research finding in a paper must 

be greater than 10 before the journal will consider the paper 

for publication. This practice enables editors to control the 

rate of publication of false-positive errors in their journals, as 

discussed below. 

A reader suggested that even if the value of a measure of 

the weight of evidence doesn’t fall beyond the critical value, 

but is close to the critical value (e.g., 0.06 in the case of the p-

value), then the result might still be useful. This is fully cor-

rect. However, in the interest of saving time, many scientific 

research communities opt to use a critical value. This enables 
us to avoid quibbling about whether results are convincing 

enough to deserve comprehensive study. This approach is 

necessary because there are many more research results for 

potential study than we have time to study. You must be taller 

than 4 feet to be allowed on this ride.  

Of course, if a measure of the weight of evidence for a 

particular effect fails to fall beyond the critical value, but the 

researcher continues to believe that the effect is real, then he 

or she should consider repeating the research project with a 

more powerful research design to attempt to obtain convinc-

ing evidence that the effect exists in the population. If the re-
searcher can obtain such evidence, a journal will be pleased 

to consider a report of the result for publication. 

All the measures of the weight of evidence are based on 

certain underlying assumptions about the data, with the nature 

of the assumptions depending on the situation at hand, with 

the assumptions generally being either identical or similar 

from measure to measure. These assumptions pertain to how 

the sample was selected from the population, how the data 

were analyzed, and whether the data exhibit certain necessary 

technical features.  

The underlying assumptions of a statistical procedure are 

often adequately satisfied in carefully performed scientific re-
search. But we must always confirm that the assumptions are 

adequately satisfied before we trust a procedure. Macnaugh-

ton (2016) discusses how a failure to check assumptions led 

to an invalid estimate of the Boltzmann constant in physics. 

Fortunately, modern software for studying relationships be-

tween variables automatically provides information in the 

output to help us to confirm that the computer-checkable as-

sumptions about the data in a data table are adequately satis-

fied. 

As noted in Principle 5 in the ASA Statement on p-values, 

a measure of the weight of evidence that an effect is real 
doesn’t directly tell us anything about either the strength 

(size) or the importance of the effect (Wasserstein 2016). In-

stead, the measure only tells us whether (in the absence of a 

reasonable alternative explanation) we have good evidence 

that the effect is real, that it exists. Failing to distinguish be-

tween the existence, the strength, and the importance of rela-

tionships between variables is a frequent source of confusion 

among laypeople. Of course, we can’t sensibly discuss the 
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strength or the importance of an effect until we have first es-

tablished that it (likely) exists in the population. 

4. False-Positive and False-Negative Errors 

All the measures of the weight of evidence sometimes make 

two types of serious errors. First, the values of the measures 
will occasionally fall beyond their critical value even though 

there is no relationship (or effectively no relationship) be-

tween the variables. When this happens, it is called a false-

positive error. False-positive errors are highly undesirable in 

scientific research because they lead us to believe that a rela-

tionship exists between variables when no relationship (or 

possibly only an undetectable weak relationship) exists. This 

leads to a waste of resources for anyone who tries to study or 

use the nonexistent relationship. 

False-positive errors can occur through two independent 

mechanisms. First, a false-positive error can be caused by ran-

dom noise in the data. It is easy to show that the noise guar-
antees that a measure of the weight of evidence will occasion-

ally exceed the critical value even when there is no effect pre-

sent in the population. If this happens, we will think that we 

have found a relationship between the variables. But we will 

be wrong.  

Due to the inevitability of random variation, we can’t 

eliminate false-positive errors that are due to random varia-

tion in scientific research. However, we can easily control the 

rate at which these errors occur. We do this by the choice of 

the critical value for the measure of the weight of evidence. 

The stricter we set the critical value, the lower the false-posi-
tive error rate. For example, the lower we set the critical p-

value (or the higher we set the critical Bayes factor), the lower 

the false-positive error rate.  

Clearly, using stricter critical values is sensible to reduce 

false-positive errors. However, using stricter critical values 

increases research costs (if statistical power is held constant). 

Therefore, we must compromise to contain costs. The need to 

compromise has led many statisticians and researchers to 

agree that critical p-values of 0.05 or 0.01 are sensible choices 

for controlling false-positive errors while achieving reasona-

ble power without driving costs too high. These ideas are ex-

panded in appendix E. 
The second way that false-positive errors occur is through 

errors made by the researcher in conducting the research or in 

analyzing and interpreting the data. These errors include care-

lessness and failure to take account of relevant extenuating 

factors.  

In scientific research, we handle all the researcher errors 

with a single simple but comprehensive rule: There must be 

no reasonable alternative explanation for why the value of a 

measure of the weight of evidence has fallen beyond its criti-

cal value before we can trust it and believe that the studied 

relationship between variables exists. Scientists are strict 
about this rule because we wish to be definitive. So if some-

one finds a reasonable alternative explanation (of any kind, 

including researcher errors) for a research finding, then this 

weakens the finding, usually to the point of making it incon-

clusive. The relevant scientific community decides what is 

“reasonable” through informal consensus, sometimes after 

much debate. 

Some statisticians pay little or no attention to the im-

portance of eliminating false-positive errors in scientific re-

search. This may be because they are more interested in ob-
taining positive results than in worrying about errors. Thus 

they view all results as “positive”, even when they may be 

studying mere noise in the data.  

In contrast, researchers worry about making false-positive 

errors because if a published false-positive research result is 

at least moderately important, then the error will invariably be 

exposed (sooner or later) due to the investigative nature of 

science. Such an error is bad for a researcher’s reputation be-

cause other researchers will be displeased by the waste of re-

sources it caused. And some people will think that the error 

may have been caused by carelessness though, as noted, it also 

may have been caused by bad luck (random noise). 
The presence of false-positive errors in scientific research 

implies that a certain proportion of attempts to replicate re-

search findings will fail. Appendix B.10 discusses the rate of 

occurrence of false-positive errors in scientific research and 

appendix B.15 discusses the “replication crisis” or “reproduc-

ibility crisis” in modern scientific research. 

In contrast to false-positive errors, the measures of the 

weight of evidence also sometimes make false-negative er-

rors. That is, the value of a measure of the weight of evidence 

may fail to fall beyond its critical value even though the stud-

ied relationship between variables is present in enough 
strength in the population. Like false-positive errors, false-

negative errors may be caused by random noise in the data or 

by researcher errors. 

Like false-positive errors, false-negative errors are highly 

undesirable in scientific research, but for a different reason. A 

false-negative error reflects a failure to discover an extant and 

perhaps useful relationship between variables, which reflects 

a loss of potentially useful knowledge. Also, a false-negative 

error for an important result leads to a loss of satisfaction, 

prestige, and monetary reward for the researcher. 

In theory, we can control the rate of false-negative errors 

in scientific research by the choice of the critical value of the 
measure of the weight of evidence. That is, the less strict we 

set the critical value, the lower the false-negative error rate. 

However, we can’t do that in practice because we are already 

using the critical value to control the socially more important 

false-positive error rate. 

False-positive errors are (immediately) socially more im-

portant in scientific research than false-negative errors be-

cause false-positive errors lead to wasted resources for other 

researchers who attempt to replicate or use the false result. If 

the other researchers can’t replicate the result, this displeases 

them and it displeases the rest of the scientific community be-
cause they feel that they may have been misled. In contrast, 

false-negative errors are directly and immediately costly 

mainly to the original researcher in the sense that a false-neg-

ative error leads to a loss of reward. Therefore, we can count 

on knowledgeable researchers to use appropriate methods to 

minimize the possibility of false-negative errors in their re-

search. 
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Researchers reduce the rate of false-negative errors in sci-

entific research by increasing the “power” of the statistical 

tests that they use to detect relationships. The power tells us 

what would happen if we were to repeat the same research 

project over and over, each time drawing a fresh sample of 
entities from the population. The power of a statistical test is 

the fraction of the time that the test will successfully detect 

the studied relationship between variables under the assump-

tion that the relationship has a certain form (as specified by 

the researcher) in the population.  

Researchers who are planning a research project can use 

statistical power software to compute ahead of time the power 

of the statistical tests in the research project to ensure that the 

power is adequate. Ideally, the power of the main statistical 

tests in a scientific research project should be at least 0.9 for 

the expected form to ensure that we have a good chance to 

detect the relationship, if it exists. Sadly, the power of the sta-
tistical tests for the expected form in some research projects 

is substantially less than 0.9, leading to false-negative errors 

in cases when the relationship under study actually does exist 

in the population. 

A researcher can increase the power of statistical tests by 

using (a) larger samples, (b) more precise measures of the val-

ues of the variables, (c) more (relevant) predictor variables, 

and (d) more efficient research designs, as discussed in statis-

tics textbooks. However, the methods for increasing statistical 

power generally increase research costs so, as noted above, 

we must compromise to contain costs. Careful research design 
is the relatively inexpensive key to maximize power while 

controlling costs. 

The always-present possibility of false-positive and false 

negative errors in scientific research is why a measure of the 

weight of evidence can’t decide whether a relationship be-

tween variables (or other effect) is real. All that the measure 

can do is tell us whether we have “good evidence”. This im-

plies that we usually must “replicate” interesting positive re-

search findings in independent new research before we can 

reasonably believe that the studied relationship between vari-

ables exists in the population. In the absence of a reasonable 

alternative explanation, a successful replication greatly re-
duces the chance that a positive result reflects a false-positive 

error.  

The possibility of false-positive and false-negative errors 

justifies Principle 3 in the ASA Statement on p-values, which 

says that scientific conclusions and business or policy deci-

sions shouldn’t only be based only on whether a p-value is 

less than the critical value (Wasserstein 2016). A p-value, 

properly used, can help us to make decisions, but it can’t make 

decisions on its own. 

False-positive and false-negative errors are traditionally 

called Type 1 and Type 2 errors respectively. However, those 
names are inefficient because they have no descriptive con-

tent.  

5. Details About the Nine Measures 

As noted, there are nine common measures of the weight of 

evidence that an effect is real. (Other sensible measures might 

also be proposed.) This paper argues that the p-value is 

slightly better than the eight other measures. To support this, 

let us compare the measures. We first consider some key tech-

nical principles that underlie all nine measures. 

In any situation in which we wish to test a research hy-

pothesis about a relationship between variables, all the 
measures of the weight of evidence are similar in the sense 

that (when applicable) they are all derived (directly or indi-

rectly) from the estimated distribution of the same parameter 

(or test statistic). The parameter is the relevant parameter of 

an appropriate model equation of the studied relationship be-

tween the variables.  

For example, suppose we have carefully performed a re-

search project to study the relationship between a set of con-

tinuous predictor variables 𝑥1, 𝑥2, … , 𝑥𝑞 and a continuous re-

sponse variable 𝑦 for the entities in some population. And 

suppose we have collected the values of the 𝑥’s and 𝑦 for our 

sample in a data table. And suppose it is appropriate to study 

the relationship between the 𝑥’s and 𝑦 in the data with simple 

linear regression analysis. Then the model equation for the re-

lationship can be written as 

 𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑞𝑥𝑞 +  𝜀 (1) 

where: 

𝑦 is the response variable 

𝑥1, 𝑥2, … , 𝑥𝑞 are the 𝑞 predictor variables 

𝑏0, 𝑏1, … , 𝑏𝑞 are the 𝑞 + 1 parameters of the equation 

(called regression coefficients in this case), and 

𝜀 is the error term of the equation. 

Suppose we wish to determine whether we have good evi-

dence that the predictor variable associated with the ith term 

in the equation is related to the response variable. That is, we 

wish to determine whether we have good evidence of a rela-

tionship between the predictor variable 𝑥𝑖 and 𝑦. We can 

make this determination by studying the estimated value of 

parameter 𝑏𝑖 for the term, as estimated from our data table.  

If there is no relationship between 𝑥𝑖 and 𝑦, then the 𝑏𝑖𝑥𝑖 

term doesn’t belong in the equation. In that case, the true 

value of 𝑏𝑖 in the population will be exactly zero because that 

makes the term vanish from the equation. Here, the value zero 

is called the “null” value of the parameter—the value that 𝑏𝑖 

will have in the population if the null hypothesis is or were 

true.  

Thus, in symbols, the null hypothesis in this case is the 

hypothesis that 𝑏𝑖 = 0. And the research hypothesis is the hy-

pothesis that 𝑏𝑖 ≠ 0. 

So we can decide whether we have good evidence that a 

relationship exists between 𝑥𝑖 and 𝑦 by determining whether 

the value of 𝑏𝑖 estimated from the sample data is roughly 

equal to the null value, zero, or whether it is substantially dif-

ferent from zero. (Even if the correct value is exactly zero in 

the population, the value estimated from the sample will al-
most never be exactly zero due to random noise in the data.) 

If the estimated value of 𝑏𝑖 is substantially different from 

zero, then we have good evidence that a relationship exists 

between 𝑥𝑖 and 𝑦. 

Thus we begin by “fitting” the model equation to the data, 

which gives us the best (in a reasonable mathematical sense) 

estimated values for each of the 𝑏’s in the equation. This gives 
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us the estimated value of 𝑏𝑖, which we represent in the follow-

ing discussion as �̂�𝑖. The “hat” indicates that this is the value 
estimated from the data for our sample, as opposed to the (un-

known) true population value, 𝑏𝑖.  

We also compute an estimate of the population standard 

error, 𝑠𝑖, of the sampling distribution of 𝑏𝑖. This estimate, 

which (counterintuitively) is readily computable in many re-

search situations, tells us the estimated “average” spread of 

the estimates of the parameter we would get if we were to re-

peat the research project over and over, each time drawing a 

new sample from the population. We represent the estimated 

standard error as �̂�𝑖.  

Researchers typically use the least-squares procedure to 

estimate parameter values and standard errors in linear regres-

sion (Chatterjee and Hadi, 2012), though other procedures are 

also sometimes sensibly used.  

After we have obtained the estimated values, �̂�𝑖 and �̂�𝑖, we 

can have a computer draw a graph of the estimated sampling 

distribution of �̂�𝑖 under the assumption that the null hypothe-

sis is true—under the assumption that 𝑏𝑖 = 0. This graph il-

lustrates how we compute several of the measures of the 

weight of evidence that the effect under study is real. Figure 

1 is a computer-drawn graph illustrating how this estimated 

distribution might appear for the estimate of 𝑏𝑖 in our re-

search, as computed from our data table.  

 

Figure 1. A graph showing the estimated sampling dis-
tribution (estimated probability density function) of 

the estimated value of parameter 𝑏𝑖 of a linear regres-

sion model equation if the relevant null hypothesis is 

true.  

No numbers except zero are shown on either axis of the fig-

ure. This is because the numbers are situation-dependent, but 

figure 1 is illustrating the general situation. Of course, in any 

specific situation (including our research) there will be num-

bers on the two axes. For example, the value �̂�𝑖 on the hori-

zontal axis might fall at the value 24.32, which would be the 

numeric value of the parameter that was estimated from our 

data.  

The horizontal axis of figure 1 shows a range of different 

possible values of 𝑏𝑖. This is the section of the range in which 

the unknown population value of 𝑏𝑖 almost certainly has its 

true value.  
As noted, the curving blue line shows the estimated sam-

pling distribution function of multiple independent estimates 

of 𝑏𝑖 under the assumption that the null hypothesis is true. 

This assumption implies that the distribution is centered on 

the null value, which is zero, as shown on the graph.  

The value �̂�𝑖 is only an estimate of the true 𝑠𝑖. This implies 

that the shape of the distribution curve on the graph is a sta-

tistical t-distribution, as mathematically derived from the 

standard assumptions underlying linear regression analysis 

(Chatterjee and Hadi, 2012).  
The spread (standard error) of the curve in figure 1 is the 

spread �̂�𝑖 that was estimated from the analysis of our research 

data. This value is shown by the two horizontal gray lines 

partway up the curve, each indicating the estimated value, �̂�𝑖. 

These two lines illustrate how the estimated standard error de-

fines the estimated “width” of the distribution. 

For a t-distribution, the value of �̂�𝑖 is roughly equal to the 

horizontal distance from the center of the distribution to either 

of the two inflection points on the curve (where the curve 
changes from bulging down to bulging up or vice versa). The 

value �̂�𝑖 estimated from the data plays a pivotal role in the 

following discussion because it specifies the width of the 

curve, on which all the conclusions directly or indirectly de-

pend. 

The t-distribution shown in figure 1 has 30 degrees of free-

dom, which is a relevant mathematical attribute of the distri-

bution that depends mainly on the sample size—the degrees 

of freedom is always slightly less than the sample size. How-

ever, the graph would look quite similar if the degrees of free-

dom were different. And the underlying principles would be 
the same. If (as is typical) a t-distribution has 25 or more de-

grees of freedom, then the shape of the distribution is quite 

similar to the shape of the normal distribution, with the shape 

becoming closer and closer without bound to the normal dis-

tribution as the number of degrees of freedom increases.  

The curving line on the graph shows the estimated relative 

rate of occurrence of different estimated values of 𝑏𝑖 we 

would obtain if the null hypothesis is or were true in the pop-

ulation and if we were to perform the research project over 

and over, each time drawing a fresh random sample of entities 
from the population (and if the relevant underlying assump-

tions are satisfied). Of course, in a real research project, if the 

relevant null hypothesis is true, we experience only a single 

instance of the infinitely many instances of the research pro-

ject that are depicted on the graph.  

The curving line descends from its maximum point evenly 

on both sides of the null value. This tells us that if the null 

hypothesis is true, then the estimated values of 𝑏𝑖 will fall with 

equal likelihood on either side of the null value, and values 

that are close to the null value are more likely to be estimated 

as the value of 𝑏𝑖 than values that are farther away.  

Of course, if the null hypothesis is false, then the distribu-

tion won’t be centered on the null value, but will be centered 

on the true (non-zero, unknown) value of 𝑏𝑖 in the population. 

And, of course, we hope that we will find good evidence that 
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the null hypothesis is false because that can help us to infer 

that the studied effect exists in the population.  

The theory of sampling distributions implies that in figure 

1 the area under the curve between any two points on the hor-

izontal axis is exactly equal to the theoretical probability that 

the value of 𝑏𝑖 estimated from research data will lie between 

the two points if the null hypothesis is or were true (and if the 

assumptions are satisfied). This implies that the total area un-

der the curve is 1.00. 

It is noteworthy that the curve shown in figure 1 is the es-

timated sampling distribution (under the null hypothesis) of 

both �̂�𝑖 and �̂�𝑖/�̂�𝑖 because �̂�𝑖 is here a constant. The shape of 

the distribution curve is identical for both distributions. But 
the units for the scale on the horizontal axis are different—

respectively raw units and standardized units. (After the units 

on the horizontal axis are chosen, the units on the vertical axis 

are defined by the fact that the area under the curve must be 

exactly 1.00.)  

The curve in figure 1 is sometimes referred to as the “like-

lihood function” under the null hypothesis. This is because the 

curve shows, as a reflection of the data at hand, the estimated 

relative likelihood of different estimated values of 𝑏𝑖 being 

obtained if the null hypothesis is or were true (and if the un-

derlying assumptions are satisfied). 
As noted, in this example we assume that we have per-

formed the research project a single time. Let us assume that 

the value of 𝑏𝑖 that we have estimated from the data is the 

value �̂�𝑖 that is shown near the right end of the horizontal axis 

of the figure. Similarly, the negative of �̂�𝑖 is shown near the 
left end of the horizontal axis. In other research projects the 

estimated value �̂�𝑖 will lie at other places on the horizontal 

axis relative to the curve (and relative to the keystone �̂�𝑖), 

nearer to or farther away from the null value. But, if the un-

derlying assumptions are adequately satisfied, the principles 

in the following discussion always apply.  

As noted above, we wish to determine whether �̂�𝑖 is far 

enough from zero for us to believe that the null hypothesis is 

false. We shall see shortly how the ideas behind figure 1 give 

us several ways to make this determination. 

It is important to understand that we can view the value of 

�̂�𝑖 as a measure of the effect size of the relationship (if any) 

between variables 𝑥𝑖 and 𝑦. We will observe what happens to 
each of the measures of the weight of evidence if the absolute 

value of the estimated effect size, �̂�𝑖, increases or decreases 

(while �̂�𝑖 stays fixed). And we will see that all the measures 

of the weight of evidence can be interpreted as measuring how 

far the estimated value �̂�𝑖 is from zero. 

The following discussion draws various conclusions. In 
real scientific research we can rightly draw these conclusions 

only if there is no reasonable alternative explanation for the 

findings. Therefore, to stay practical, we must keep the possi-

bility of alternative explanations in mind. Let us now consider 

the nine measures of the weight of evidence that an effect is 

real in a population. 

5.1. P-Value 

The p-value for the effect shown in figure 1 is the sum of the 

two “tail” areas of the distribution curve, with the tails being 

defined by the locations of �̂�𝑖 and −�̂�𝑖. Thus the p-value in 

this example equals 𝑎1 + 𝑎2. In the present case, as in most 

cases (even when the distribution is asymmetric), the tail ar-

eas are defined so that 𝑎1 = 𝑎2.  

For figure 1, the p-value (the value of 𝑎1 + 𝑎2) was com-

puted by a computer to be 0.039, which is slightly less than 

the standard critical p-value of 0.05. So, in this example, we 

have good evidence that a relationship exists between the pre-

dictor variable 𝑥𝑖, and the response variable, 𝑦. That is, �̂�𝑖 is 

far enough away from zero for us to (tentatively) believe that 

a relationship exists. 

Figure 1 enables us to see that the p-value is (by defini-

tion) the estimated fraction of the time (i.e., the probability) 

that we will obtain an estimate of 𝑏𝑖 at least as extreme as the 

estimate we have obtained (i.e., �̂�𝑖) if the null hypothesis is or 
were true in the population and if we were to repeat the re-

search project over and over, each time drawing a fresh sam-

ple of entities from the population (and if the underlying as-

sumptions of the p-value are adequately satisfied).  

The p-value has a key implication: If we use a critical p-

value of 0.05 (or 0.01, etc.) then, in the long run, if we do 

everything properly, we will make a false-positive error in 5% 

(or 1%, etc.) of the statistical tests when the null hypothesis is 

true in the population. Research communities often use 0.05 

or 0.01 as the critical p-value, judging that these error rates 

are acceptable.  
It is noteworthy that the rate of publication of false-posi-

tive errors in a scientific research community will generally 

be somewhat or substantially higher than the “average” criti-

cal p-value used in the community. This counterintuitive fact 

is illustrated graphically in appendix B.10. 

The logic of the p-value discussed in the preceding three 

paragraphs reflects the characterization of the p-value in sec-

tions 2 and 3 (Principle 1) in the ASA Statement on p-values 

(Wasserstein 2016). Many statisticians and experienced re-

searchers agree that this logic is highly sensible. But, unfor-

tunately, many non-statisticians agree that the logic is hard to 

understand. Therefore, the p-value is a pons asinorum (bridge 
of fools) in scientific research and statistics. Until a person 

understands the difficult logic, it is hard to transparently un-

derstand how we can use a sufficiently low p-value to enable 

us to reject the null hypothesis (in the absence of a reasonable 

alternative explanation). 

Beginners sometimes incorrectly think that the p-value 

measures the probability that the null hypothesis is true or the 

probability that the effect observed in the data occurred 

through chance, as noted in Principle 2 in the ASA Statement 

(Wasserstein 2016). These interpretation errors aren’t serious 

from a scientific viewpoint because they generally lead to the 
same conclusions as the correct interpretation of the p-value. 

But they are still errors. 

Since the probability interpretation of the p-value is com-

plicated, it is gratifying that it is possible and conceptually 

efficient to understand the operation of the p-value without 

understanding the probability logic. The p-value is simply a 
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measure of the weight of evidence that an effect is real. The 

lower the p-value below the critical value (and in the absence 

of a reasonable alternative explanation), the greater the weight 

of evidence that the effect is real. When interpreting p-values 

in scientific research, many researchers and statisticians use 
this sensible and easy-to-understand point of view. 

The p-value is an informative measure of the weight of 

evidence because if we consistently use it with the same crit-

ical value, and if we do everything properly, then the critical 

value tells us the fraction of the time we will make false-pos-

itive errors in cases when the null hypothesis is true. That is 

useful to know and control because false-positive errors are 

costly because they send other researchers on a bound-to-fail 

wild-goose chase after a nonexistent effect. 

It is easy to see that (because �̂�𝑖 is assumed to be constant) 

if the effect size, �̂�𝑖, increases in absolute value, then the tail 

areas in figure 1 will become smaller, and thus the p-value 

will become lower. Thus the p-value is in a monotonic de-

creasing relationship with the absolute effect size. We will use 

this important fact later below. 

5.2. t-Statistic 

The t-statistic for the effect shown in figure 1 is the distance 

of the estimated value of �̂�𝑖 from the null value in units of the 

standard error. Thus the t-statistic is �̂�𝑖/�̂�𝑖. If we measure (by 

eye or with a ruler) the distance of �̂�𝑖 from zero on the figure 

and if we also measure the length of �̂�𝑖, we see that the value 

of the t-statistic in this case is 2.16. That is, the estimate of 

parameter 𝑏𝑖 is 2.16 standard errors away from zero. 

The critical value for the t-statistic is often specified as 

2.0. Thus, in the example, the t-statistic value of 2.16 falls be-

yond the critical value and thus we have reasonable evidence 

in this case that a relationship exists. (It is easy to show that a 

critical t-value of 2.0 is roughly equivalent to a critical p-value 

of 0.05 in rejecting or not rejecting the null hypothesis in rel-

evant research situations.) 

If the value of the effect size, �̂�𝑖, increases in positive 
value (or becomes more negative in negative value), then (be-

cause �̂�𝑖 is here assumed to be constant) the value of the t-

statistic will also increase in absolute value. Therefore, the 

absolute value of the t-statistic is in a monotonic increasing 

relationship with the absolute effect size. 

In terms of how it is constructed, the t-statistic is easier to 

understand than the p-value. This is because the t-statistic is a 

simple ratio of two numbers, which turns it into the distance 

of �̂�𝑖 from the null value in standard units. In contrast, the p-

value is an area, the probability of an event under the null hy-

pothesis. Areas and probabilities are two-dimensional and 

(due to the greater complexity) are harder to understand than 

one-dimensional (scalar) distances.  

If (under reasonable assumptions) the form of the param-

eter sampling distribution under the null hypothesis is known, 

we can use the p-value as a measure of the weight of evidence 

in any situation in which we can use the t-statistic. (If the form 

of the parameter sampling distribution isn’t known, then we 

can generally still compute the t-statistic, but we can’t 

properly interpret it.) However, we can also sensibly use the 

p-value as a measure of the weight of evidence in situations 

when we can’t use the t-statistic, such as in the frequent situ-

ations when the test statistic has an F-distribution or a chi-

square distribution. Thus the p-value is more general than the 

t-statistic. 

5.3. Confidence Interval 

The range of the 95% confidence interval in figure 1 is shown 

by the two vertical gray lines in the figure. This range is the 

range that contains 95% of the area under the curve with, con-

ventionally, equal-area tails at each end.  

Confidence intervals operate slightly differently from the 

other measures in the sense that confidence intervals simply 

give us a Yes or No answer whether the value of the parameter 

estimate falls beyond the critical value. If the estimated value 

of the parameter is outside the range of the confidence inter-

val, then we take this as good evidence that the relationship 

between variables under study exists in the population. Thus 

on figure 1 the parameter estimate, �̂�𝑖, is slightly outside the 

95% confidence interval and thus we have good evidence that 

the effect is real. 

If the value of the effect size, �̂�𝑖, increases in positive 

value (or decreases in negative value), then �̂�𝑖 will be farther 

outside or closer to being outside the confidence interval. 

Therefore, in the logically relevant sense, the confidence in-

terval is in a monotonic relationship with the effect size. 

Some researchers sensibly center the confidence interval 

on �̂�𝑖 and then check whether the interval overlaps the null 

value. This is effectively the same procedure as described in 

the preceding paragraphs, but done from a different perspec-

tive. 
It is easy to show that in standard situations if we use a 

95% confidence interval to distinguish between positive and 

negative results, then this is exactly equivalent to using a crit-

ical p-value of 0.05 to make the same distinction. Similarly, 

using a 99% confidence interval is exactly equivalent to using 

a critical p-value of 0.01, and so on. 

Confidence intervals are harder to understand than p-val-

ues because the researcher must consider the scale of the as-

sociated parameter. The parameter and its scale (though 

highly relevant) are somewhat distant from the scientific goal 

of determining whether a relationship exists between varia-
bles. The p-value enables us to hide these details and to focus 

on the value of the p-value, which is always on the same scale. 

If the p-value is at or below the critical value (and if there is 

no reasonable alternative explanation), then we have good ev-

idence that the effect is real, which is the scientific question 

of interest.  

The p-value is more general than the confidence interval 

because confidence intervals can’t be readily used in more 

complicated situations, such as with model equations that 

contain terms for statistical interactions among predictor var-

iables, where the p-value operates efficiently. 
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5.4. Likelihood Ratio 

In figure 1 the likelihood ratio is in effect the ratio of the 

heights of the likelihood function at the value �̂�𝑖 on the hori-

zontal axis to the height at the null value, i.e., ℎ𝑝/ℎ𝑞. The 

value ℎ𝑝 is the height of the likelihood function at the esti-

mated value �̂�𝑖 if the null hypothesis is true. In contrast, if the 

specific hypothesis that 𝑏𝑖 = �̂�𝑖 is true, then it would be cor-

rect to superimpose the peak of the distribution function at �̂�𝑖 

on the horizontal axis. Then the height of the likelihood func-

tion at �̂�𝑖 on the axis would be ℎ𝑞.  

(Technically, if the research hypothesis is true and the cor-

rect value of 𝑏𝑖 in the population is �̂�𝑖, and the relevant as-

sumptions are satisfied, then the sampling distribution of �̂�𝑖 

will no longer be a central t-distribution, but will be noncen-

tral t-distribution. In this case the height of the distribution at 

the value �̂�𝑖 will generally be a slightly different height from 

ℎ𝑞, which adds another layer of complexity, which we 

acknowledge for completeness and then mostly ignore in the 

present high-level discussion.) 

If we measure ℎ𝑝 and ℎ𝑞 on the graph and then compute 

the ratio of the two heights, we see that the likelihood ratio for 

the data behind the graph is 0.106 (but note the preceding par-

agraph).  

If the value of the effect size, �̂�𝑖, increases in positive 

value (or becomes more negative in negative value), then the 

value of the likelihood ratio will decrease because ℎ𝑝 will de-

crease while ℎ𝑞 remains constant (but note the second preced-

ing paragraph). Therefore, the likelihood ratio is in a mono-
tonic decreasing relationship with the effect size. 

If the null hypothesis is true in a given research situation, 

then the likelihood ratio will generally be close to 1.0. In con-

trast, if the research hypothesis is true, then the likelihood ra-

tio will generally be lower. Therefore, in theory, we can spec-

ify a critical value for the likelihood ratio. And we can decide 

that we have good evidence that a relationship exists between 

the relevant variables if the value of the likelihood ratio is less 

than the specified critical value.  

However, critical values for likelihood ratios are rarely 

used. Instead, we compute the fraction of the time that the 
value of the likelihood ratio will be as low as it is or lower if 

the null hypothesis is or were true (and if other relevant as-

sumptions are adequately satisfied). But computing this frac-

tion amounts to computing a p-value, and thus we can use 

standard critical p-values as the critical values. So using a 

likelihood ratio can be viewed as merely another sensible path 

to computing an appropriate p-value. 

If we study scientific practice, we find that researchers 

rarely use likelihood ratios either to compute p-values or for 

other approaches for testing for the existence of a relationship 

between variables. This may be partly because the likelihood-

ratio approach often gives essentially the same p-values as 
conventional approaches (Wackerly, Mendenhall, and 

Scheaffer, 2008, p. 553), but the likelihood ratio concepts are 

arguably somewhat harder to understand than the p-value 

concepts. 

Likelihood-ratios are harder to understand than p-values 

because the ratio of two heights of the likelihood functions of 

a parameter under the two hypotheses is harder to understand 

than the probability (fraction of the time) that the parameter 

estimate will be as discrepant or more discrepant from the null 

value if the null hypothesis is or were true. This difficulty of 

understanding the likelihood ratio arises from the difficulty 
people who aren’t statisticians have understanding the con-

cept of the likelihood function for a parameter under a hypoth-

esis.  

Of course, the theory of the probability behind the p-value 

is based directly on the likelihood function under the null hy-

pothesis. But we can hide these ideas and work with less ex-

perienced people using the idea of the p-value as a sensible 

probability, without referring to the likelihood function itself. 

This helps to reduce the perceived complexity. But we can’t 

readily hide the likelihood function if we are discussing the 

ratio of two heights of the function. 

The likelihood ratio approach is also harder to understand 
because it uses two distributions—the theoretical probability 

density of �̂�𝑖 under the null hypothesis and the theoretical den-

sity of �̂�𝑖 under the hypothesis that the population value of 𝑏𝑖 

is equal to the value estimated from the sample. In contrast, 

the p-value uses only a single distribution—the theoretical 

density of �̂�𝑖 under the null hypothesis.  

(It is also possible to view the likelihood ratio as being 

based on the ratio of the heights at two points on the single 

distribution shown in figure 1, though that requires a different 

analysis.) 

The likelihood ratio approach may also be used less often 

because the mathematical distribution of the likelihood ratio 

under the null hypothesis is somewhat difficult to compute, 

and formulas for the distribution are only available in the “as-
ymptotic” sense, which implies that the formulas (and hence 

the p-values derived from the formulas) are only fully correct 

if the sample size is infinite, which doesn’t happen. Fortu-

nately, these asymptotic approaches give “fairly good” an-

swers for typical sample sizes. However, this leads research-

ers to ask whether “fairly good” is good enough for the situa-

tion at hand, and there is presently no easy answer to that 

question. 

Some statisticians (e.g., Cox, 2006, p. 91) use the recipro-

cal of the likelihood ratio discussed above because the recip-

rocal is also reasonable and has advantages. 

5.5. Bayes Factor 

For the Bayes factor, the distribution shown in figure 1 should 
be viewed as the estimated marginal posterior distribution of 

𝑏𝑖 under the null hypothesis, as derived from Bayesian prin-

ciples. This distribution may be a t-distribution, but it may 

also be some other type of distribution. But regardless of the 

type of distribution, in standard situations with a continuous 

response variable the distribution will typically be (at least 

roughly) bell-shaped and symmetrical about the null value if 

the null hypothesis is or were true. 

The Bayes factor is similar to the likelihood ratio, but is 

more complicated. This is because the placement of the center 
of the distribution under the research hypothesis generally 

isn’t on the estimated value of 𝑏𝑖. These ideas are illustrated 

in figure 2. 
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Figure 2. A redrawn version of figure 2 from an article 

by Bayarri, Benjamin, Berger, and Sellke (2016, here-

after BBBS). This graph shows their interpretation of 

the Bayes factor. The BBBS notation has been 

changed to reflect the notation of the present paper. 

The H0 stands for the null hypothesis and the H1 stands 

for the research hypothesis. As noted in the caption of 

the BBBS figure, the value of the Bayes factor is 

ℎ1/ℎ0. (The BBBS figure is copied with CC BY 4.0 

permission.) 

The figure illustrates the complexity of the Bayesian approach 

because BBBS have drawn the figure with the maximum 

value of the H1 (red) distribution offset from the estimated 

value �̂�𝑖 of the parameter. This is because the H1 distribution 

is a specific distribution that is specified by the researcher, as 

noted by BBBS in their discussion about the “point alterna-

tive” hypothesis they are using (p. 93). This distribution (re-

flecting a very specific research hypothesis) is at the re-

searcher’s complete discretion. The fact that the location and 

width of the H1 distribution are at the researcher’s discretion 

adds a degree of arbitrariness to the procedure. 
The Bayes factor is also somewhat arbitrary in the sense 

that it depends on the choice of the prior distribution, and the 

choice of the prior distribution is itself often arbitrary, even 

when the choice is “vague”. 

BBBS discuss (sec. 3.2) a Bayes factor bound, which sim-

plifies things and removes some arbitrariness by specifying 

(in effect) that the H1 (red) distribution in figure 2 should be 

centered on the vertical line at �̂�𝑖 on the horizontal axis, as it 

is in the case of the likelihood ratio. Then the BBBS Bayes 

factor is equivalent to ℎ𝑞/ℎ𝑝 on figure 1 (but based on the 

estimated Bayesian posterior parameter distributions of �̂�𝑖 un-

der the two hypotheses, and not on the estimated maximum-

likelihood parameter distributions). 

BBBS recommend that the Bayes factor should be greater 

than a critical value of 16 before we can reject the null hy-

pothesis (2016, p. 96). In standard research this approach is 

substantially stricter than the standard critical p-value of 0.05. 
Thus if we use a critical value of 16 for the Bayes factor then, 

in the long run, we will make substantially fewer false-posi-

tive errors with the Bayes factor, but we will also make sub-

stantially more false-negative errors. 

Figure 2 suggests (somewhat obscurely) the relationship 

between the effect size and the Bayes factor. That is, if we fix 

the two curves on the graph, and if we then let �̂�𝑖 increase or 

decrease, then we will see that ℎ1/ℎ0 (i.e., the Bayes factor) 

will (at least in certain typical cases) consistently increase or 

decrease in step. Thus there is a monotonic increasing rela-

tionship between the absolute effect size and the Bayes factor.  

As with the likelihood ratio, some statisticians sensibly 

use the reciprocal version of the Bayes factor. 

Bayes factors are substantially harder to understand than 

p-values because the Bayes factor uses the additional con-

cepts of the prior distributions of the parameters of the model 

equation and uses the concept of the point alternative hypoth-

esis illustrated by the H1 curve in figure 2. 

The Bayes factor and the p-value are arguably equally 
general because they can apparently each be computed in any 

situation in which the other can be computed. In particular, p-

values can always be computed whenever computer-based 

resampling tests are possible. And we can simulate and 

resample any state of affairs that we can model. The compu-

tation of the Bayes factor (which pertains to a parameter of a 

model equation) requires that a model equation be implicitly 

or explicitly stated. Thus the presence of models behind 

Bayes factors implies that simulation-based p-values are pos-

sible in all situations when Bayes factors can be computed. 

Therefore, arguably, the p-value is at least as general as the 

Bayes factor in scientific applicability. Similarly, a Bayes fac-
tor can be computed whenever a p-value can be computed be-

cause the likelihood function required to compute the Bayes 

factor will be available. 

Figure 2 implies that the Bayes factor depends directly on 

the widths (e.g., the standard deviations) of the Bayesian pos-

terior distributions of the parameter under the research and 

null hypotheses. Therefore, it is important to ask whether the 

widths of these two distributions are scientifically meaning-

ful. The answer to this question is unclear. What is the scien-

tific meaning of the width of a Bayesian posterior distribu-

tion? (The width isn’t an estimate of the width of the param-
eter sampling distribution.) Or does the width have no scien-

tific meaning beyond being the “average” of the widths of the 

prior distribution and the likelihood function, serving (quite 

sensibly) only to estimate the value of the associated parame-

ter (through a measure of the central tendency of the posterior 

distribution under the research hypothesis)? 

It is noteworthy that we can compute so-called “posterior 

intervals” from a posterior distribution, but then the same 

question arises for them. Since these intervals don’t refer to 

sampling distributions, what do they mean scientifically? Do 

they have any scientific meaning? 

5.6. Posterior Probability that the Null Hypothesis 

is True 

Bayesian statisticians discuss how to compute the “probabil-
ity” that the null hypothesis is true (Berger and Sellke 1987; 

Sellke, Bayarri, and Berger 2001; Wagenmakers 2007, pp. 

792–794; Held and Ott 2016). This idea is intriguing because 

this probability is somewhat intuitive. Bayesians refer to this 
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probability as the “posterior” probability that the null hypoth-

esis is true because it is computed by mathematically combin-

ing a “prior” probability that the null hypothesis is true with 

the data obtained in the research project. 

It is easy to show how the posterior probability that the 
null hypothesis is true can be derived from the Bayes factor 

(Berger and Sellke 1987, p. 115, left column, third line from 

bottom). And if we differentiate the Berger and Sellke for-

mula for the relationship between the Bayes factor and the 

posterior probability that the null hypothesis is true, we find 

that the derivative is always positive. (Berger and Sellke use 

the reciprocal Bayes factor.) Thus, as we might expect, the 

posterior probability that the null hypothesis is true is in a 

monotonic relationship with the Bayes factor. Thus (due to 

the transitivity of monotonicity) the posterior probability that 

the null hypothesis is true is in a monotonic decreasing rela-

tionship with the effect size.  
Unfortunately, the posterior probability that the null hy-

pothesis is true leads to an apparent contradiction, which is 

discussed in appendix A. This paper takes the view that the 

posterior probability that the null hypothesis is true can’t be 

sensibly used in scientific research unless the contradiction is 

resolved. 

5.7. Second-Generation p-Value 

Blume, D’Agostino McGowan, Dupont, and Greevy (2018) 

propose a “second-generation” p-value and they note in their 

abstract that this p-value helps to control false-positive (i.e., 

Type 1) errors. Therefore, it is sensible to view the second-

generation p-value as a measure of the weight of evidence that 
an effect observed in scientific research data is real in the un-

derlying population. 

The second-generation p-value is an appropriate measure 

of the weight of evidence that an effect is real for researchers 

who envision an “indifference zone” around the null value of 

the parameter under consideration. If the estimated value of 

the parameter is significantly different from the null value ac-

cording to the traditional p-value, but if the confidence inter-

val for the estimated value (when centered on the estimated 

value) overlaps the indifference zone, then Blume et al. say 

(indirectly) that they are less interested in the associated ef-

fect.  
It is easy to envision the confidence interval (or perhaps 

some other reasonable interval) and the indifference zone 

drawn on figure 1. The confidence interval is centered on the 

parameter estimate, �̂�𝑖, and the indifference zone is centered 

on the null value, zero. The second-generation p-value is a 

measure of the extent to which these two intervals overlap 

each other. 

If the confidence interval and the indifference zone over-
lap, then the second-generation p-value is essentially the pro-

portion of overlap. (The proportion is measured in terms of 

the ratio of (a) the width of the overlap to (b) the total width—

both halves—of the confidence interval, not to the total width 

of the indifference zone.) The less the two intervals overlap, 

the lower the proportion of overlap until there is no overlap 

and the proportion becomes zero. 

A problem with the second-generation p-value is that 

many researchers don’t envision an indifference zone around 

the null value. Instead, researchers who understand the con-

cept generally view such a zone as an unnecessarily-limiting 

additional concept. That is, we are usually interested in any 
real difference of a parameter from the null value, regardless 

of how small the difference is. This is because once we know 

(through a replicated low p-value or through some other rea-

sonable measure of the weight of the evidence) that a real ef-

fect probably exists in the population, and if we think the ef-

fect might be important, then we can take further steps to 

strengthen the effect, perhaps by taking account of other rel-

evant variables.  

Of course, subject-matter expertise is necessary here to 

decide whether a weak but (likely) real effect is potentially 

important and thus deserves further study. But researchers can 

only apply their subject-matter expertise if they know about 
the existence of the effect. Thus researchers almost always 

wish to know about the existence of weak but real effects. So 

they almost never have an indifference zone. Researchers 

never wish to hide facts. 

Blume et al. indirectly suggest that a sensible critical value 

for the second-generation p-value is zero—the borderline be-

tween when the two regions do and don’t overlap. 

The second-generation p-value is monotonically related to 

the effect size because (with other factors held constant) the 

farther the parameter estimate is from the null value, the lower 

the proportion of overlap of the two intervals, and therefore 
the lower the second-generation p-value (until it reaches 

zero).  

The need to specify the width of the indifference zone 

makes the second-generation p-value somewhat arbitrary be-

cause different researchers may choose to use conceptually 

different widths, which implies that second-generation p-val-

ues from different research projects generally aren’t fully 

comparable. However, proponents of the second-generation 

p-value can eliminate this arbitrariness if they can convince 

researchers to use conceptually equivalent widths of the indif-

ference zone in all research.  

As explained above, the interpretation of the proportion of 
overlap underlying the second-generation p-value is relatively 

simple. However, determining the proportion is only the first 

step. And to compute the second-generation p-value, the pro-

portion must be multiplied by a “small-sample correction fac-

tor”, as discussed in sections 2.1 and 2.5 in the Blume et al. 

article. This ingenious but hard-to-understand factor is de-

signed to give the second-generation p-value appropriate 

properties relative to the sample size. This makes the second-

generation p-value more complicated for beginners, arguably 

making it harder to understand than the standard p-value. 

The second-generation p-value is less general than the 
standard p-value because the second-generation version 

(presently) doesn’t operate in cases with the F-distribution 

and chi-square distribution, where the standard p-value oper-

ates efficiently. 

The second-generation p-value is conceptually equivalent 

to a standard confidence interval (placed on the estimated pa-

rameter value), but with an extra control knob—a knob to 

control the width of the indifference zone. Researchers will 
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be inclined to set the knob at zero because that reduces the 

false-negative error rate, which researchers are always eager 

to reduce. This setting (in effect) takes us back to a standard 

confidence interval. Of course, in the long run, using a stand-

ard confidence will also lead to slightly more false-positive 
errors. But these errors are inevitable (at a controllable rate) 

regardless of which approach we use. We weed out false-pos-

itive errors in scientific research through appropriate replica-

tion. 

It is noteworthy that the second-generation p-value con-

flates three aspects of an effect—the existence of the effect, 

the strength of the effect, and the importance of the effect. 

The indifference zone defines the zone in which overlap with 

the confidence interval implies that the effect (if it exists) isn’t 

strong enough to be important. As noted in section 3, it is sci-

entifically sensible to keep these concepts separate. And it is 

sensible to first establish the existence of an effect before we 
consider its strength or its importance. 

5.8. D-Value 

Demidenko (2016) proposes the D-value as a measure of the 

weight of evidence that an effect observed in scientific re-

search data is real in the underlying population. Mathemati-

cally, in the simplest case, the D-value is a transformed ver-

sion of the associated p-value. That is, as Demidenko illus-

trates in his formulas (2) and (5), the D-value uses the same 

computing formula as the associated (one-sided) p-value, ex-

cept that the D-value formula replaces sample size, 𝑛, that is 

used in the p-value formula with the numeral 1. In other 
words, Demidenko has removed the sample size from the for-

mula because he recognized that this removal yields a sensible 

measure. 

Demidenko proposes in both the abstract and the conclu-

sion of his article that a potential role or purpose of the D-

value in scientific research is “to weigh up the likelihood of 

events under different scenarios”. He also suggests in the last 

paragraph of the article that we should replace the p-value in 

scientific research with the D-value. These points suggest that 

Demidenko is proposing that we use the D-value for the same 

purpose as we use the p-value—as a measure of the weight of 

evidence that an effect (relationship between variables) ob-
served in scientific research is a real effect in members of the 

population of entities under study. 

Demidenko notes that in his standard two-group medical 

example the D-value is the proportion of patients in the sam-

ple who got worse after the treatment. This proportion is much 

easier to understand than the corresponding p-value for the 

hypothesis that the drug has a real effect on patients in the 

population. This ease of understanding of the D-value is a 

good reason the D-value might be an effective replacement 

for the complicated p-value as a measure of the weight of ev-

idence that an effect is real. 
However, from a theoretical point of view, it doesn’t make 

sense to use the D-value as a measure of the weight of evi-

dence that an effect is real because the D-value doesn’t take 

account of the sample size. And, as suggested by Demidenko, 

it seems more sensible to view the D-value as a measure of 

the strength or effect size of a relationship between variables. 

Demidenko refers to “effect size on the probability scale” 

(2016, sec. 3.1) and “the effect size expressed in terms of the 

probability of group separation” (2016, sec. 6). 

Measures of the strength or size of an effect are not good 

measures of the weight of evidence that an effect is real be-
cause the value of a proper measure of strength must be inde-

pendent of the size of the sample that is used to estimate the 

value. Measures of strength must be independent of the sam-

ple size because the strength is a property of the underlying 

effect in the population, not a property of the sample. (The 

sample size is relevant for estimating the precision of an esti-

mate of strength, but not in computing the estimate of strength 

itself.) 

In contrast, the sample size is directly relevant in deter-

mining the weight of evidence (provided by a research result) 

that an effect is real. That is, for a given observed effect size, 

a larger sample gives us a greater weight of evidence that the 
effect is real than a smaller sample. This is due to the idea that 

(assuming proper sampling) the larger the sample, the more 

representative the sample test statistic (e.g., Student’s t-statis-

tic) is of the correct value of the statistic in the entire popula-

tion (due to the law of large numbers). And the more repre-

sentative a test statistic is of the correct value, the more con-

fidence we can have in conclusions drawn from the value of 

the statistic. 

In the linear regression example, the D-value is in a mon-

otonic decreasing relationship with the effect size, as implied 

by the definition of the D-value in section 5 of Demidenko’s 
article (2016). 

Even though the D-value doesn’t take account of the sam-

ple size, we could still define critical values for the D-value 

to enable us to use it as a sensible measure of the weight of 

evidence that an effect is real. However, for the D-value to 

work like the other measures, the appropriate critical values 

would need to be a function of the sample size. This would 

make using the D-value as a measure of the weight of evi-

dence that an effect is real substantially more complicated 

than using a measure that can sensibly use a single fixed crit-

ical value. 

Therefore, since the D-value doesn’t take account of the 
sample size, it isn’t an efficient measure of the weight of evi-

dence that an effect is real. Therefore, it isn’t sensible to eval-

uate the D-value as a measure of the weight of evidence that 

an effect is real in a population. And, contrary to Demidenko’s 

recommendation, it isn’t sensible to consider replacing the p-

value with the D-value because the two measures perform dif-

ferent functions. The p-value is a measure of the weight of 

evidence that an effect is real, but the D-value is sensibly 

viewed as a measure of the effect size (under the assumption 

that the effect is real). 

5.9. Information Criteria 

Researchers sometimes use an information-criterion method 
to (in effect) provide a measure of the weight of evidence that 

an effect observed in scientific research data is real in the un-

derlying population, as discussed by Konishi and Kitagawa 

(2008). We can use a stepwise regression procedure (e.g., for-

ward stepwise regression or the stepwise lasso [Efron, Hastie, 
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Johnstone, and Tibshirani, 2004]) to select the terms for can-

didate regression equations and we can use an information cri-

terion (e.g., the Schwarz Bayesian Criterion) to help us to de-

cide which of the equations is best (in the sense of yielding 

the lowest value of the information criterion). Or we can use 
the information criterion itself to select terms, on each step 

selecting the term that causes the value of the information cri-

terion to be reduced the most. These methods yield model 

equations for relationships between variables that are similar 

to or identical to the model equations yielded by the other 

methods.  

The information-criterion methods work somewhat differ-

ently from the other methods for determining whether we 

have enough evidence that an effect is real. An information-

criterion method typically works automatically in a computer 

program to derive a model equation for a relationship between 

variables so that the equation contains all the predictor varia-
bles that the information-criterion method has decided are re-

lated to the response variable.  

The information-criterion methods don’t use explicit crit-

ical values because they have (in effect) implicit critical val-

ues that are built in. These implicit methods decide which 

terms to include in the model equation based on a sensible 

mathematical formula for computing the value of the infor-

mation criterion for an equation, which amounts to a mathe-

matical score. SAS gives the formulas of some of the main 

information criteria (2018). The scores in the information-cri-

terion methods reflect how well the equation fits the data at 
hand—the better the fit, generally the lower (better) the score. 

The scores also take account of the complexity of the model 

equation—the less complex the equation, generally the lower 

the score.  

The information-criterion methods operate by simply se-

lecting the model equation with the lowest score from the set 

of possible equations. This is complicated slightly by the fact 

that the different information criteria (e.g., the Schwarz 

Bayesian Information Criterion, the Akaike Information Cri-

terion, and Mallows Cp) sometimes disagree with each other 

about which equation is best. Then the researcher wonders 

which information criterion to use. However, this is more a 
theoretical problem than a real problem because the measures 

often agree with each other. The Schwarz Bayesian criterion 

is popular, perhaps because it is conservative in the sense that 

it tends to require slightly stronger evidence than the other 

criteria that a term belongs in the equation before the term will 

be selected for inclusion. 

Arguably, the information-criterion methods are harder to 

understand than the p-value because the multiple formulas for 

the criteria are somewhat daunting. On the other hand, at a 

higher level the information-criterion methods can be viewed 

as being easier to understand than the p-value because they 
operate as an automatic black box (implemented by program-

ming the formulas into a computer program) for determining 

sensible model equations. 

When used appropriately, the information-criterion meth-

ods are in monotonic relationships with the effect size. That 

is, if we were somehow able to change the size of an effect in 

the population (with other factors, including the total sum of 

squares, held constant), then the formulas imply that the ex-

pected value of the relevant information criterion will change 

accordingly.  

Researchers use the information-criterion methods for de-

tecting relationships less frequently than other methods, per-
haps because the information-criterion methods have only 

been developed for certain standard situations with continu-

ous response variables. Also, unlike the other methods, the 

information-criterion methods don’t allow easy control of 

false-positive and false-negative error rates. 

5.10. The Monotonic Relationships Among the Nine 

Measures 

Each of the preceding nine subsections concludes that its 

measure of the weight of evidence is monotonically related to 

the absolute effect size. This implies that the measures are all 

monotonically related to each other (due to the transitivity of 

monotonicity). Thus if one of the measures of the weight of 

evidence is somehow made to go up or down in value in a 

particular research project (with other relevant factors, typi-
cally the total sum of squares, held constant), then all the other 

measures will go up or down in value (or down or up) in step. 

This is an instance of mathematical clockwork. 

The monotonic relationships between the values of the 

measures imply that in almost any given research situation, 

all the applicable measures can be calibrated with each other 

to have equivalent critical values. This calibration (through 

the choice of critical values) will cause the various measures 

to exhibit identical behavior in indicating whether we have 

enough evidence (in the absence of a reasonable alternative 

explanation) to tentatively reject the relevant null hypothesis.  
The measures can’t be calibrated with each other in all sit-

uations because there are exceptions. But, to the extent that 

the exceptions are known, they are unimportant. For example, 

the second-generation p-value isn’t strictly monotonic with 

the other measures because if the effect is large enough, this 

p-value goes to exactly zero. Similarly, we can’t calibrate the 

information criteria to behave equivalently with the behavior 

of another method because the information criteria don’t have 

adjustable critical values. But we can generally calibrate the 

other measures to behave equivalently with the information 

criteria. 

In discussing the calibration of the measures, there is no 
suggestion that we should calibrate the measures with each 

other. (That would be complicated.) Instead, the idea of cali-

brating the measures with each other is a conceptual exercise 

to illustrate the parallel operation of the measures. 

The fact that we can generally calibrate the various 

measures to behave equivalently implies that the nine 

measures are (when so calibrated) equally powerful for de-

tecting relationships between variables. Thus the nine 

measures are (when usable) generally functionally equivalent 

to one another in high-level output if equivalent critical values 

are used. Operationally, the nine measures have somewhat 
different mathematical bases and they have different (but 

highly correlated) scales. But they are functionally equivalent.  

Bayesian methods can take account of an informative 

prior distribution to increase their statistical power. However, 
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frequentist methods can also efficiently take account of such 

a distribution through the methods of meta-analysis (Hedges 

and Olkin 1985; Borenstein, Hedges, Higgins, and Rothstein 

2009).  

The monotonic relationships between the measures of the 
weight of evidence generally aren’t linear relationships. But 

the relationships are almost all smooth, as suggested by fig-

ures 1 and 2. 

The form of the monotonic relationships between the 

measures sometimes depends on the research situation. For 

example, in one research situation there will be one mono-

tonic relationship between a given p-value and the associated 

Bayes factor as the effect size changes. But in another re-

search situation there will be another monotonic relationship 

between the p-value and the Bayes factor as the effect size 

changes. The differing relationships between the measures are 

due to other factors that sometimes play a role in the relation-
ships, such as the prior distribution and the sample size. 

This paper hasn’t proven that all the measures of the 

weight of evidence are always in monotonic relationships 

with the effect size. This point is relevant because it is con-

ceivable that there is a non-monotonic relationship in certain 

cases with the likelihood ratio or the Bayes factor. However, 

it seems likely that the relationships are monotonic in all prac-

tical scientific research situations, which is what is important 

for the present discussion. 

The fact that the nine measures are functionally equivalent 

implies that they are equally good at detecting relationships 
between variables. Therefore, it is efficient to decide which of 

the measures is most reasonable based on one or more sec-

ondary attributes, and then to work solely with that measure. 

This allows us to minimize the number of concepts that we 

must juggle. Section 6 compares the nine measures to help us 

to decide which is most reasonable. 

5.11. Generalization 

For simplicity, the preceding discussion about the nine 

measures is in terms of a linear regression model equation. 

This presumes that the value of the response variable in the 

studied relationship between variables is a continuous varia-

ble and it presumes that the values of the response variable 

can be sensibly modeled with a linear combination of the val-
ues (or functions of the values) of the predictor variables. 

However, the discussion readily generalizes to most (all?) 

other types of model equations of relationships between vari-

ables, such as other types of relationships with continuous re-

sponse variables (e.g., nonlinear model equations, cell-means 

model equations, or generalized linear or nonlinear model 

equations). The discussion also readily generalizes to model 

equations with discrete response variables (e.g., logistic 

model equations, loglinear model equations). 

The generalization of the discussion is possible because 

all model equations have parameters (which are occasionally 
hidden). And most parameters have null values. And if the 

correct value of a parameter in nature is equal to the null 

value, this implies that the associated effect is absent.  

For many parameters of model equations, we have sensi-

ble ways of estimating the correct population values of the 

parameters from appropriate data and sensible ways of deter-

mining the likely sampling distribution of the values under the 

null hypothesis, which will be similar to the distribution 

shown above in figure 1. And for many parameters we are 

interested in determining whether the population value of the 
parameter is different from the null value because if we can 

find good evidence of a real difference, this implies that we 

have good evidence that the associated relationship between 

variables (or other effect) exists—good evidence that the re-

lationship (effect) is real in the population.  

The p-value, likelihood ratio, and Bayes factor have been 

generalized for various types of model equations. Some of the 

other measures have been generalized in some cases. 

6. Comparing the Measures of the Weight of Evi-
dence that an Effect Is Real 

Let us compare the p-value with the eight other measures. Ta-

ble 1 summarizes some comparisons using criteria discussed 
in the preceding section and using one other important crite-

rion.  
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Table 1. Comparisons of the p-value with the eight other measures of the weight of evidence that an effect observed 
in scientific research is real. 

 The p-value is 

Measure of weight of evidence 

 

more 
informative 

easier to 
understand 

more 
general 

less 
arbitrary 

more 
powerful 

t-statistic  X  = = 

confidence interval    = = 

likelihood ratio   = = = 

Bayes factor   =  = 

posterior probability null hypothesis is true   =  = 

second-generation p-value     = 

D-value  X  = = = 

information-criterion methods  ?  = = 

 

Table 1 presents the comparisons from the winner’s (i.e., the 

p-value’s) perspective because that is pedagogically efficient. 

If the reader thinks that a different measure of the weight of 

evidence is best, then it is a good exercise to regenerate the 

table with the preferred measure swapped with the p-value in 

their locations in the table.  
A check mark in a cell in the body of the table indicates 

that the p-value is (arguably) superior to the measure associ-

ated with the row in terms of the attribute associated with the 

column. For example, the check mark in the “more informa-

tive” column for the t-statistic implies that the p-value is more 

informative than the t-statistic. In contrast, an X in a cell in-

dicates that the p-value is inferior to the measure associated 

with the row in terms of the attribute. For example, the X in 

the “easier to understand” column for the t-statistic indicates 

that the p-value is harder to understand than the t-statistic. An 

equals sign in a cell indicates that the p-value and the measure 

associated with the row are (exactly or roughly) equivalent on 
the attribute associated with the column.  

The “more informative” column of the table indicates that 

the p-value (arguably) has a more informative scale than each 

of the other measures. The p-value is more informative be-

cause the critical p-value (when consistently properly used) 

gives us a direct estimate of the rate of occurrence of false-

positive errors in research in cases when the null hypothesis 

is true. The rate of occurrence of false-positive errors is im-

portant in scientific research because these errors are guaran-

teed to occur some of the time, are socially costly (because 

they send researchers attempting to replicate the effect on a 
wild-goose chase), and their rate of occurrence is partially 

controllable (through the choice of the critical value).  

Some readers may disagree that the p-value is more in-

formative than the other measures and they may believe that 

another measure of the weight of evidence is more informa-

tive than the p-value. The judgement here depends mainly on 

how much weight a person puts on the importance of control-

ling the rate of occurrence of false-positive errors in scientific 

research. In choosing among measures of the weight of evi-

dence that an effect is real, what (if anything) is socially more 

important in scientific research than controlling the rate of oc-

currence of socially costly false-positive errors? 

Each checkmark and X in the “easier-to-understand”, 

“more general”, and “less arbitrary” columns in the body of 
the table is supported by discussion above in sections 5.1–5.9. 

The “more powerful” column of the table only contains equals 

signs, which implies that the p-value and the eight other 

measures are generally equally powerful for detecting effects. 

This is justified by the idea that the nine measures can gener-

ally be calibrated to have equivalent critical values, as dis-

cussed above in section 5.10.  

No attempt is made to justify the cells with equals signs in 

the “more general” and “less arbitrary” columns of the table. 

Instead, these equalities are (like null hypotheses) merely as-

sumed to be correct. Thus each equality (and each inequality) 

in the table is completely open to focused refutation. And, for 
any cell in the body of the table, it is a useful exercise to try 

to refute the cell’s claim. 

We might sensibly compare the nine measures of the 

weight of evidence on criteria that are different from the five 

criteria in table 1. However, it is hard to devise other sensible 

criteria. For example, we might compare the measures on the 

criterion of mathematical beauty, though that seems less im-

portant from a practical perspective.  

In view of the central role of empiricism in scientific re-

search, it is highly sensible to ask whether we could perform 

an empirical or quantitative comparison of the nine measures. 
For example, we might compare the nine measures in terms 

of the frequency with which they each make false-positive 

and false-negative errors. However, we can’t do that because, 

as discussed above in section 5.10, the nine measures can be 

(with minor exceptions) calibrated to perform equivalently, so 

they are effectively equivalent in performance (in terms of in-

dicating a positive or negative result and thus in terms of sta-

tistical power).  
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It would be very sensible to empirically compare the 

measures in cognitive terms, particularly in terms of ease of 

student understanding. But such empirical educational com-

parisons are difficult (perhaps impossible) due to the diffi-

culty in removing the confounding effects of the teaching ap-
proach that we use to teach each method.  

Furthermore, even if we could somehow remove the con-

founding, the paucity of practical real effects discovered in 

education research despite numerous careful attempts implies 

that negative results are sadly the norm in education research. 

Any small real effects are presumably swamped by the noise 

due to the high student-to-student variation.  

[More powerful comparative approaches in education re-

search have recently become available using pre-recorded 

online courses that (a) have tightly controllable and easily var-

iable content, (b) enable easy random assignment of treat-

ments, (c) can have consistent student evaluation measures, 
and (d) can have large enrollments, yielding higher statistical 

power. Perhaps education researchers can compare various 

approaches to teaching each of the nine measures to find the 

approach and the measure that is best in terms of (a) measures 

of students’ attitudes toward the various measures and (b) at-

titudes toward the use of the measures in scientific research.] 

We could easily empirically compare the measures in 

terms of popularity by surveying the scientific research liter-

ature to determine the frequency of usage of each measure. In 

this case experience suggests that the p-value would win 

handily. However, we would like an empirical comparison 
that goes beyond mere popularity. 

So far, the author has been unable to think of sensible use-

ful empirical comparisons between the measures that could 

realistically be done. Can the reader think of realistic ways 

that we could empirically compare the nine measures? 

In view of the apparent lack of empirical criteria on which 

we can compare the nine measures, the logical arguments that 

are collected in this paper must apparently suffice. (Appendix 

H discusses some further theoretical arguments about the pre-

ferred measure.) The paper holds that the logical arguments 

are enough to conclude that (a) we need a formal efficient way 

to detect effects in scientific research, and (b) the p-value is 
the best way.  

It is noteworthy that the “logical” arguments given in sec-

tions 5 and 6 and summarized in table 1 are somewhat subjec-

tive because the arguments are based on certain (basic) judg-

ments. Thus, if a researcher believes that the logical argu-

ments favoring the p-value aren’t convincing, and if he or she 

believes that another measure of the weight of evidence that 

an effect of is real is better than the p-value, then they should 

use the other measure. A researcher is completely free to use 

whichever measure they find is most practical for them (while 

bearing in mind that if they wish to publish their research, 
some measures will likely be more acceptable to journals in 

their field than others). 

And, of course, if a researcher believes that none of the 

measures of the weight of evidence is useful, then the re-

searcher should omit using the measures. But if we omit using 

a measure of the weight of evidence, then how can we reliably 

and efficiently distinguish real effects from noise in data? 

7. Conclusions 

Many scientific research projects study relationships between 

variables in populations of entities. Such study, if successful, 

gives us the ability to accurately predict or control the values 

of the response variable in new entities from the population. 
This ability is often socially, theoretically, or commercially 

useful. 

In studying an effect (e.g., a relationship between varia-

bles), we need an efficient measure of the weight of evidence 

that the effect observed in the research data for a sample is a 

real (i.e., reproducible) effect in the population behind the 

sample. We need such a measure to avoid deceiving ourselves 

and others about an effect that may be either (a) nonexistent 

or (b) so weak that we can’t (presently) reliably observe it, 

and therefore it is effectively non-existent. This helps us to 

avoid wasting resources on effects observed in scientific re-

search that aren’t real. 
This paper has discussed nine measures of the weight of 

evidence that an effect is real. With minor exceptions, the 

measures can all be calibrated with each other to make the 

same pronouncements about whether there is enough evi-

dence in the data to reject the relevant null hypothesis and 

thereby (tentatively) conclude that the studied effect is real. 

Therefore, the nine measures are all functionally equivalent. 

And the only difference between them is operational—they 

use different mathematical approaches and different scales. 

All the measures of the weight of evidence that an effect 

is real sometimes make false-positive and false-negative er-
rors. Unfortunately, we can’t completely eliminate these er-

rors due to our always-limited resources. However, we can 

use statistical methods to help us to control the rates of occur-

rence of the errors. 

A low-enough p-value (or another sensible indicator of 

enough weight of evidence) is good evidence that an effect is 

real only if there is no reasonable alternative explanation for 

this evidence.  

As summarized in table 1, the p-value has certain ad-

vantages over the other measures pertaining to information 

content, ease of understanding, generality, and lack of arbi-

trariness. These advantages arguably outweigh the disad-
vantages of the p-value. No other reasonable attributes for 

comparing the measures appear to be available. Therefore, the 

p-value is the best available measure of the weight of evidence 

that an effect (usually a relationship between variables) ob-

served in scientific research is real in the entities in the studied 

population. 

Supplementary Material 

The supplementary material expands some of the preceding 

ideas. Appendix A describes an apparent contradiction that 

arises from the concept of the posterior probability that a null 

hypothesis is true. Appendix B gives more details about using 
p-values to detect relationships. Appendix C discusses some 

well-known criticisms of the p-value. Appendix D compares 

hypothesis testing with Karl Popper’s idea of falsification. 

Appendix E discusses the optimal critical value for a test sta-

tistic. Appendix F proposes a way to teach p-value ideas to 
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beginners. Appendices G through M discuss miscellaneous 

topics about detecting and studying relationships between 

variables. Appendix N discusses some exceptions to the idea 

that scientific research projects study relationships between 

variables. Appendix O discusses whether the ideas in this pa-
per are “real”. 
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The appendices are in a different order from the order in 

which they are referenced in the body. The order is sensible 

for readers who wish to read the appendices from beginning 

to end. Other readers can locate appendices of interest through 

studying the preceding table of contents. 

Appendix A: The Jeffreys-Lindley Paradox 

This appendix will be of more interest to statisticians than to 

general readers.  

The posterior probability that the null hypothesis is true 

(as discussed in section 5.6 in the body of this paper) leads to 

a puzzling paradox: Consider the task of assessing from re-

search data whether a regression coefficient in a model equa-

tion is different from the null value of zero—the problem that 

was discussed in section 5 in the body.  

In this situation, the posterior probability that the null hy-

pothesis is true is (like the other measures of the weight of 

evidence) a function of the parameter estimate. This function 
is derived under reasonable assumptions by Berger and Sellke 

(1987, equation 1.1). In their example 1, they base their deri-

vation on the assumption that the variance, 𝜎2, of the sam-

pling distribution of the parameter is known and they refer to 

the effect-size function of the parameter of interest as t. Their 

t-statistic is closely related to the conventional t-statistic (dis-

cussed in section 5.2 of this paper) for which the variance of 

the sampling distribution of the parameter is unknown (and 

thus is estimated from the data). 

In either case, the t-statistic is the standardized distance of 

the parameter estimate from the null value of the parameter. 

It is “standardized” in the sense that it is the distance in raw 

units divided by the (known or estimated) standard error of 
the estimate. This division by the standard error has the useful 

effect of making the t-statistic dimensionless and comparable 

from one research situation to the next, as discussed in section 

5.2.  

(Technical Aside: For the following discussion it is note-

worthy that under the assumption that the variance of the sam-

pling distribution of the parameter is known, the Berger and 

Sellke t-statistic takes complete account of the sample size in 

the sense that the sample size is appropriately used in the com-

putation of the estimate of the standard error used in the de-

nominator of the t-statistic. Under the assumption that the var-
iance is unknown, the t-statistic takes almost complete ac-

count of the sample size, with the shape of the distribution 

curve varying slightly depending on the degrees of freedom, 

which depend mainly on the sample size. However, although 

it is useful to review these points for clarity, they arguably 

aren’t relevant for the present discussion. That is, the phenom-

enon described in the following paragraphs occurs regardless 

of whether the variance of the sampling distribution is 

known.) 

It is of interest to study the relationship between the Ber-

ger and Sellke t-statistic and the posterior probability that the 

null hypothesis is true. Figure A.1 shows (for three different 
sample sizes) the relationship according to Berger and 

Sellke’s function.  

 

Figure A.1. The relationship between the Berger and 

Sellke t-statistic and the posterior probability that the 

null hypothesis is true for three different sample sizes 

assuming that the prior probabilities that the research 

and null hypotheses are true are both 0.5. The figure 

was generated using Berger and Sellke’s equation 1.1. 

The R program to generate this figure is in the supple-

mentary material for this paper.  

The figure shows that Berger and Sellke’s function behaves 

appropriately in the sense that the higher the value of the t-
statistic is above zero (or the lower the value of the t-statistic 

is below zero), the lower the “probability” that the null hy-

pothesis is true, as we would expect. However, the function 

appears to behave inappropriately in the sense that for a given 

value of the t-statistic, the greater the sample size, the higher 

the “probability” that the null hypothesis is true. 

For example, the vertical line at 2 on the horizontal axis 

of the figure tells us that if the value of the Berger and Sellke 

t-statistic is 2.0 and if the sample size is 30, then the “proba-

bility” that the null hypothesis is true is roughly 0.45. But if 

the value of the value of the t-statistic is 2.0 and the sample 
size is 100, then the “probability” that the null hypothesis is 

true is roughly 0.58. And if the value of the t-statistic is 2.0 

and sample size is 500, then the “probability” that the null hy-

pothesis is true is roughly 0.75. 

These results are counterintuitive because we would think 

that for a given value of the t-statistic (i.e., a given standard-

ized distance of a parameter estimate from the null value), the 

larger the sample size, the more evidence we have that the null 

hypothesis is false. But the figure is showing that for a given 

value of the t-statistic, the larger the sample size, the more 

evidence we have that the null hypothesis is true. 
Furthermore, in the case when the t-statistic is 2.0, if the 

sample size is 500, then the conventional critical t-value of 

2.0 implies that we can (in the absence of a reasonable alter-

native explanation) just barely reject the null hypothesis. But 

the Berger and Sellke formula is telling us that the probability 

that the null hypothesis is true is 0.75, implying that it is more 

likely than not that the null hypothesis is true. This is in direct 

opposition to the conventional measures of the weight of evi-

dence. 

The idea that for a given value of the t-statistic, a larger 

sample should give us more evidence that the null hypothesis 
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is false is derived from the law of large numbers (also dis-

cussed in section 5.8). This law implies that the larger the 

sample, the closer we can expect (on average) the standard-

ized parameter value estimated from the sample data (i.e., the 

Berger and Sellke t-statistic in the present case) to be to the 
correct value of the parameter for the entire population. This, 

in turn, implies that, for a larger sample, the distance of the 

parameter estimate from the null value is a more reliable esti-

mate of the true value of this distance in the population. But 

if for a larger sample we have a more reliable estimate of the 

value of the parameter, and if this estimate is different from 

the null value, then this should cause the “probability” that the 

null hypothesis is true to be somewhat lower, not higher, than 

for a smaller sample. 

The puzzling result illustrated by the figure is an example 

of the “Jeffreys-Lindley paradox”, which Berger and Sellke 

(1987) discuss in the context of their equation 1.1 that was 
used to generate the figure. However, despite the many pub-

lished “explanations” of the Jeffreys-Lindley paradox, the 

fact that the posterior probability that the null hypothesis is 

true is a counterintuitive increasing function of the sample 

size for a given value of the t-statistic suggests that this phe-

nomenon isn’t merely a “paradox”, but is a contradiction.  

We can’t readily attribute the paradox or contradiction to 

the fact that the prior probabilities assigned to the research 

and null hypothesis are both 0.5. For if we change these prob-

abilities in multiple small increments, then the locations of the 

lines on the graph will change in step, but the fact that larger 
sample sizes are associated with higher lines on the graph for 

a given value of the t-statistic won’t change. This will be cor-

rect at least within some limited but likely wide range of the 

prior probabilities. 

This apparent contradiction tells us that something is 

wrong here because the probabilities are misbehaving. This 

raises the question whether the posterior probability that the 

null hypothesis is true is scientifically meaningful. The appar-

ent contradiction also raises the question of whether the Bayes 

factor is scientifically meaningful because the posterior prob-

ability that the null hypothesis is true is derived directly from 

the Bayes factor. 

Appendix B: Details About Hypothesis Testing with 
p-Values to Detect Relationships 

Sections 2 through 4 in the body of this paper present a high-

level discussion of statistical hypothesis testing. The present 

appendix expands the ideas for less-experienced readers, fo-

cusing on the p-value. The discussion is a mixture of simple 

statistical ideas and basic ideas of scientific research. 

B.1. First, Clean the Data 

If we wish to study a relationship between one or more pre-

dictor variables and a response variable using the data in a 

data table, then we must first perform a crucial housekeeping 

step. In this step we carefully identify and correct errors in the 
values in the table. This (mundane) “cleaning” step is im-

portant because data errors occur surprisingly often in scien-

tific research, and the errors will obviously distort any anal-

yses we do of the data. Omit data cleaning at your peril. Some 

statistics textbooks explain how to examine and (without bias) 

clean scientific research data. 

B.2. The Research and Null Hypotheses 

As noted in the body, we can use hypothesis testing to deter-
mine whether we have good evidence that a relationship exists 

between variables. We first partition the possibilities about 

the phenomenon under study into two mutually exclusive and 

exhaustive hypotheses—the research hypothesis and the null 

hypothesis. The research hypothesis describes the general 

version of the phenomenon that we believe exists in the pop-

ulation, but we haven’t yet reliably observed. In contrast, the 

null hypothesis describes the “null” situation—the situation in 

which the phenomenon that is under study doesn’t exist in the 

population. We perform a hypothesis test of appropriate re-

search data to help us decide which of the two hypotheses is 

(likely) true. 
Typically, the (main) research hypothesis in a scientific 

research project states that a relationship between certain var-

iables exists in the entities in the population of entities we are 

studying. But, more generally, a research hypothesis can as-

sert the existence of something that isn’t a relationship be-

tween variables, such as the existence of a particular type of 

entity, such as a fundamental physical particle. In either case, 

the problem is the same—we need to determine whether we 

have good evidence that the postulated thing (relationship or 

other entity) exists. 

Thus in medical research to test a new drug, the research 
hypothesis says that the drug has an effect on the patients—a 

detectable relationship exists in the population of patients be-

tween the variables “drug dose” and “patient response”, 

where “patient response” is a relevant measure of the wellness 

or illness of a patient. Note how the research hypothesis 

simply says that the drug has an effect on the response varia-

ble in the patients, but with no details about the effect.  

In drug research there is invariably a further presumed hy-

pothesis, which is that the drug under study has a beneficial 

effect on the patients, as opposed to a detrimental effect. This 

hypothesis is present because the goal of drug research isn’t 

merely to find an effect, but is to find a useful beneficial ef-
fect—an effect that makes patients better, not worse. This 

point generalizes to many areas of scientific research—re-

searchers often have a strong preference for discovering one 

type of effect, a “beneficial” effect, as opposed to the opposite 

“detrimental” effect because a beneficial effect will have a 

positive payoff, as opposed to a negative payoff.  

However, the important pragmatic hypothesis that a given 

treatment has a beneficial effect is outside the general machin-

ery of hypothesis testing. And standard formal hypothesis 

testing ignores the researcher’s preference because occasion-

ally when we analyze the relevant research data we find good 
evidence of the opposite effect to what we expected. Thus the 

standard conservative form of hypothesis testing is impartial 

and allows equally for the possibility of an effect that is op-

posite to what we expect.  
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The preceding point has the important technical implica-

tion that a “two-sided” or “two-tail” statistical test should gen-

erally be used instead of a one-sided test. That is, we take ac-

count of both the upper and the lower tails of the distribution 

shown in figure 1 in the body. A one-sided test is permissible 
only in situations in which we are completely confident that 

the estimated value in nature of the parameter under consid-

eration can only occur on one side of the null value. That is, 

if parameter estimates above (or perhaps below) the null value 

are impossible, then a one-sided test is permissible. Here, the 

impossibility is determined by the situation being measured, 

and not merely by limitations of the measuring instrument. 

This situation occurs, but it is rare, so it is sensible to almost 

always use two-sided statistical tests. 

Some researchers are attracted to a one-sided p-value be-

cause it is generally only half as big as the corresponding two-

sided p-value. So switching from a two-sided p-value to a 
one-sided p-value may cause the p-value to jump from being 

above the critical value to being below it. That is, choosing to 

use a one-sided p-value may enable the researcher to satisfy 

the conventional criterion for publication. However, arguably, 

that is inappropriately bending the rules. 

It is noteworthy that some authors refer to hypothesis test-

ing as “null hypothesis significance testing”, sometimes using 

the acronym NHST. This term is arguably inappropriate be-

cause it emphasizes the relatively unimportant null hypothe-

sis—the hypothesis that we are trying to escape from. There-

fore, it is more sensible to emphasize that we are attempting 
to show good evidence that the relevant research hypothesis 

is noticeably true, rather than attempting to show that the op-

posing less important null hypothesis is noticeably false. Thus 

it is sensible to call the procedure “research hypothesis test-

ing” or simply “(statistical) hypothesis testing”. 

The preceding discussion refers to the relationship be-

tween a single predictor variable and a response variable. 

However, as noted in the body, often in a scientific research 

project we have multiple predictor variables. In this case the 

ideas are similar but slightly more general—we are interested 

in determining whether there is a relationship between (a) one 

or more of the predictor variables and (b) the response varia-
ble in the entities in the underlying population. And, for each 

possible relationship between the variables we will have a re-

search hypothesis and a corresponding null hypothesis. We 

examine the research data to determine which of the multiple 

research hypotheses (if any) is or are (likely) true in the enti-

ties in the population. 

B.3. The Beginning Assumption that the Null 

Hypothesis Is True 

As noted in the body, the widely accepted scientific principle 

of parsimony (also called Occam’s or Ockham’s razor) tells 

us to keep things as simple as possible while remaining con-

sistent with all the known facts (Baker, 2016). A sensible jus-

tification of this principle is the rhetorical question: Why 
make things more complicated than need be—why make 

things up that we don’t know are true?  

As also noted in the body, most researchers who study re-

lationships between variables strongly believe at the begin-

ning of a research project that the relationship between varia-

bles (or other effect) they are studying exists. However, a cer-

tain percentage of the time (possibly higher than 50%, de-
pending on the scientific discipline) we are wrong. That is, 

unfortunately, the relationship between variables we are stud-

ying doesn’t exist, and the null hypothesis is (actually or in 

effect) true. Thus, by convention, to reduce errors in scientific 

research, we aren’t allowed to formally believe that a relation-

ship between variables exists until someone has properly 

demonstrated that it exists. 

The preceding paragraph refers to the idea that a null hy-

pothesis may be “in effect” true. This important idea enables 

us to take account of the possibility that a null hypothesis may 

be false, but the associated relationship between variables is 

extremely weak—so weak that it is undetectable in the present 
research. It isn’t possible to distinguish between (a) the case 

when a null hypothesis is precisely true and (b) the case when 

the null hypothesis is false, but it is in effect true (i.e., a rela-

tionship between the variables exists, but it is too weak to be 

detectable). Our inability to distinguish between these two 

cases generally isn’t a serious problem because if a relation-

ship between variables is so weak that it is undetectable, then 

this implies that it is so weak that it isn’t useful in any reason-

able (i.e., noticeable) sense. 

We begin the study of a new relationship between varia-

bles with the formal assumption that the null hypothesis about 
the relationship is true. But informally we usually strongly be-

lieve and hope that our research hypothesis is true. If we have 

chosen the research hypothesis sensibly, and if we can show 

through our research that the research hypothesis is (likely) 

true, then this will increase human knowledge. 

B.4. Model Equations 

Hypothesis testing uses a sensible mathematical procedure to 

help us to decide whether we can reject a given null hypothe-

sis and (tentatively) conclude that a relationship exists be-

tween (a) selected predictor variable(s) and (b) the response 

variable in the entities in the population. As noted in the body, 

the procedure is based on a study of a “model equation” of the 

relationship between the variables. The model equation states 
the mathematical form of the relationship between variables 

that we believe (hope) exists. 

We can write the general form of a model equation as 

 𝑦 =  𝑟(𝑥) + 𝜀  (2) 

where 𝑦 is the response variable and 𝑥 is the predictor varia-

ble(s). The 𝑥 may symbolize either a single predictor variable 

or a vector of two or more predictor variables. 

The 𝑟(𝑥) in equation (2) is a mathematical function of 𝑥. 
This function may be any (single-valued) mathematical func-

tion—the choice of the function is at the researcher’s discre-

tion. A researcher will try to choose a form for 𝑟(𝑥) so that it 

best mimics the true form of the relationship between the pre-

dictor variable(s), 𝑥, and the response variable, 𝑦, in the pop-

ulation. Statistics textbooks discuss approaches to selecting 

the best function for a model equation of a relationship be-

tween variables. 
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(This paper follows the convention used by Efron and 

Hastie [2016] to use the notation 𝑟(𝑥) instead of 𝑓(𝑥) for the 

function because 𝑓(𝑥) is by convention used in statistics to 

represent a density function.) 
If we have derived a model equation properly, then we can 

use it to make predictions. For example, suppose that we have 

derived a specific form of model equation (2). And suppose 

we measure the numeric values 𝑥 of the properties of a new 

entity from the population, and suppose that the specific nu-

meric values can be represented symbolically as 𝑥′. Then we 

can predict that the value of 𝑦 for this entity will be 𝑟(𝑥′), 

which will translate into a real predicted numeric value of 𝑦. 

The 𝜀 in equation (2) is the “error” term. It reflects the fact 

that a model equation can almost never predict the value of 𝑦 

perfectly. The 𝜀 represents the difference between the correct 

(measured) value of the response variable for an entity and the 

value of the response variable predicted by 𝑟(𝑥):  

𝜀 = 𝑦 − 𝑟(𝑥). 

The error term is viewed as varying at random from entity to 

entity in the population, with the distribution of the values of 
the term typically being a random normal distribution, as ex-

plained in statistics textbooks. 

If we find good evidence of a relationship between varia-

bles and if we then properly derive a model equation, 𝑟(𝑥), 

for the relationship, then the predictions made by the equation 

for new entities from the population will be good predictions 

in the sense of being more accurate and more precise than 

other predictions that don’t take account of the relationship 

(and don’t take account of other relevant relationships). The 

increase in accuracy and precision of predictions may be sub-

stantial or it may be minimal, depending on the strength of the 
relationship between the variables, and depending on the de-

sign of the research project we use to derive the equation. 

Equation (2) is completely general, but real model equa-

tions are more specific. For example, recall the model equa-

tion discussed in section 5 of the body of this paper: 

 𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑞𝑥𝑞 +  𝜀 (1) 

where: 

𝑦 is the response variable 

𝑥1, 𝑥2, … , 𝑥𝑞 are the 𝑞 predictor variables 

𝑏0, 𝑏1, … , 𝑏𝑞 are the 𝑞 + 1 parameters of the equation 

(regression coefficients), and 

𝜀 is the error term of the equation. 

As noted in section 5.11 in the body, many other forms of 

model equation are also available. We use statistical proce-

dures to help us to choose the form that works best to model 

the relationship between the variables we are studying. 

B.5. Parameters of Model Equations 

The 𝑏0, 𝑏1, … , 𝑏𝑞 in equation (1) are the 𝑞 + 1 parameters of 

the equation. Almost all model equations have parameters, 

and the parameters are assumed to be fixed (i.e., constant) 
numbers. We can estimate the values of the parameters of a 

model equation through the analysis of appropriate research 

data. The estimated numeric values of the parameters are im-

portant because they help us to specify the exact form of the 

equation and because they help to detect relationships be-

tween the variables. 

It is sensible to conceive of “true” values of the parameters 

of a model equation in the underlying population. The “true” 

value of a parameter of a model equation in the population is 
the numeric value of the parameter that we would estimate if 

our measuring instruments could measure with perfect preci-

sion and if we were able to perform the research project under 

study on a sample that includes every entity in the population.  

The preceding paragraph implies that the true value of a 

parameter is meaningful because we can estimate it with any 

specified precision if we are prepared to spend enough re-

sources. But the paragraph also implies that the exact true 

value of a parameter is generally unknowable because (a) we 

almost never have perfect measuring instruments and (b) we 

almost never have enough resources to study every entity in 

the relevant population. Fortunately, statisticians have discov-
ered efficient methods for estimating parameter values from a 

data table so that (if we do everything properly) the estimated 

values will be as close as possible to the true values. 

Statisticians have invented three sensible somewhat-re-

lated general methods to provide good estimates (from an ap-

propriate scientific research data table) of the true values of 

the parameters of an appropriate model equation. These meth-

ods are the least-squares method, the maximum-likelihood 

method, and the Bayesian methods. Each method is optimal 

(according to its own sensible definition of “optimal”). And 

each method has many details, as explained in statistics text-
books.  

It is reassuring that if we apply the three methods to a 

given applicable data table using a sensible model equation, 

then the methods usually give identical or highly similar esti-

mates of the values of the parameters of the equation. This is 

because, at root, each method is trying to satisfy the same 

basic goal, which is to correctly estimate the true values of the 

parameters of the chosen equation for the studied relationship 

between variables in the entities in the population of entities 

under study. 

Statisticians and programmers have programmed the pa-

rameter-estimation methods into easy-to-use software—gen-
erally the same software that we use to compute p-values. 

Thus we can (if we follow the rules) easily correctly perform 

these methods by supplying the data table and a few simple 

instructions to the software and then running the software. 

The software analyzes the data and provides “best” estimates 

of the numeric values of the parameters of the model equation 

of interest in easy-to-understand computer output.  

The fact that the obtained parameter estimates are only es-

timates of the true values implies that if we perform the same 

research project to estimate the same parameter values two or 

more times, each time collecting fresh data, then the obtained 
numeric values of the estimate for a given parameter will vary 

(by “small” amounts) from one instance of the research pro-

ject to the next. This variation has three sources: (a) possible 

variation in relevant unmeasured variables that vary from one 

instance of the research project to the next due to possible mi-

nor differences in the research conditions, (b) random meas-

urement error in the measurement of the values of the re-

sponse and predictor variables in the entities in each instance 



 Supplementary Material: The p-value is best 23. 

of the research project, and (c) possibly a true random com-

ponent of the variation [though it is difficult, perhaps impos-

sible, to separate this component from the variation due to (a) 

and (b)]. 

The preceding discussion hints at the idea of the “true” 
model equation for a relationship between variables. Here is 

a sensible empirical definition based on the principle of par-

simony:  

Definition: The true model equation with the true 

values of the parameters of a relationship between var-

iables is the simplest equation and parameter values 

that makes the very best predictions of the values of 

the response variable from the values of the available 

predictor variables for new entities from the popula-

tion.  

This definition doesn’t enable us to directly identify the true 

equation for a given relationship between variables. But the 
definition tells us how to zero in on the true equation (through 

trying different forms of the equation with relevant data and 

selecting the simplest form that reliably works best). 

Appendix I below discusses two instances when the true 

values of the parameters of a model equation aren’t viewed as 

fixed values, but are viewed as varying. As noted, we usually 

view the values of parameters that we work with in scientific 

research as estimated values. Appendix J discusses an instruc-

tive exception in the physical sciences in which we know the 

exact true values of certain parameters of model equations. 

B.6. Detecting Relationships Between Variables by 

Examining Estimated Parameters 

We determine whether a relationship exists between variables 
by determining whether the research data imply that the esti-

mated value of a relevant parameter of the relevant model 

equation is meaningfully different from the null value of the 

parameter. As noted in the body, if we can demonstrate that 

the estimated value of a parameter is meaningfully different 

from (i.e., inconsistent with) the null value, then this implies 

that it is unlikely that the null hypothesis is true in the popu-

lation (Cox, 2006, pp. 42, 197–198). This, in turn, implies that 

it is likely that a relationship exists between (a) the predictor 

variable(s) 𝑥 associated with the parameter and (b) the re-

sponse variable 𝑦. The following discussion expands these 

ideas. 

Appendix B.5 names three sensible general methods that 

we can use to estimate the values of parameters of a model 

equation from scientific research data. Therefore, in theory, 

we can determine whether there is a relationship between two 

variables by collecting appropriate data (i.e., by collecting 

values of the two variables from members of a representative 

sample of entities from the population). Then we can use one 

or more of the parameter-estimation methods to estimate 

(from the data) the value of the relevant parameter of the ap-

propriate term in an appropriate model equation for the rela-
tionship between the two variables. (We can choose an “ap-

propriate” model equation through careful examination of 

scatterplots or other graphs of the data.) Then we can check 

whether the estimated value of the parameter is different from 

the null value. If we find that the estimated value is different 

from the null value, this suggests that we can reject the null 

hypothesis and conclude that a relationship exists between the 

two variables. 

However, though the preceding ideas are theoretically 

correct, there is a further complication: If we estimate the 
value of a parameter of a model equation from appropriate 

scientific research data, then (as discussed above in appendix 

B.5) the estimated value will vary from one research project 

to the next. This implies that the estimated value of a param-

eter will virtually never be exactly equal to the null value, 

even when there is no relationship whatever between the var-

iables in the population. This phenomenon occurs even in re-

alistic artificial data in which (by construction) there is abso-

lutely no relationship between the variables. The phenomenon 

is due to inescapable random noise in data. 

Therefore, if we wish to determine whether a relationship 

exists between certain variables, we can’t simply check 
whether the estimated value of the relevant parameter of a rel-

evant model equation is different from the null value (because 

the estimated value will almost always be different from the 

null value). Instead, we must check whether the estimated 

value is significantly different from the null value—far 

enough away from the null value to be well above the noise. 

More generally, we can determine whether we have good 

evidence that a relationship exists between variables by 

checking whether an appropriate test statistic (which may or 

may not be a parameter of a model equation) is meaningfully 

different from the relevant null value. For example, we may 
check whether an F-statistic in analysis of variance is mean-

ingfully different from its null value of approximately 1.0. 

Statisticians have invented the p-value (and the eight other 

measures) to help us to determine whether the estimated value 

of a relevant parameter (or test statistic) is significantly dif-

ferent from the null value. This enables us to “test” whether 

we have good evidence that a relationship exists between the 

studied variables in the entities in the studied population.  

B.7. The p-Value 

Consider a standard definition of the p-value:  

Definition: The p-value for the estimated value of a 

parameter of a model equation (or the p-value for the 

value of a relevant test statistic) is the fraction of the 
time (i.e., the probability) that the value, as estimated 

from relevant research data, will be as discrepant or 

more discrepant from the relevant null value as the 

value estimated from the present data if the following 

three conditions are or were all satisfied:  

• the associated null hypothesis is or were true in the 

population 

• we were to perform the research project over and 

over, each time using a fresh random sample of en-

tities from the population, and 

• certain often-satisfied technical assumptions that 
are required to correctly compute the p-value are or 

were satisfied. 

The definition implies that the p-value is the probability of the 

relevant event occurring if the null hypothesis is or were true. 

This initially may seem odd because we are highly interested 
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in proving that the null hypothesis is false. So why are we 

computing probabilities that pertain to the undesirable situa-

tion when the null hypothesis is true?  

The answer is that this approach is (arguably) logically the 

most sensible approach, even though it is roundabout. The ap-
proach is most sensible because many researchers agree that 

nobody has proposed a better approach, though various alter-

native approaches have been proposed, as discussed in sec-

tions 5 and 6 in the body.  

Consider the logic of the p-value. The definition implies 

that the lower the p-value, the less likely it is that a parameter 

estimate as far from the null value (or farther) as was obtained 

would be obtained if the null hypothesis is or were true in the 

population (and if the underlying assumptions are satisfied). 

Therefore, in a sensible conceptual leap, if the assumptions 

are adequately satisfied, the lower the p-value, the more evi-

dence we have that the value of the associated parameter is 
different from the null value in the population. 

But if the value of a parameter of a model equation in the 

population is different from the null value, then this implies 

that a relationship exists in the population between the pre-

dictor variable(s) associated with the parameter and the re-

sponse variable. Thus, the lower the p-value below the critical 

value (and in the absence of a reasonable alternative explana-

tion), the more evidence we have that a relationship (or other 

studied effect) exists—the more evidence we have that the re-

lationship is real. 

Statistics textbooks explain methods to correctly compute 
p-values from the data in an appropriate data table. The vari-

ous methods enable researchers to study the many different 

types of relationships between variables that can exist. The 

textbooks also explain the underlying technical assumptions 

for each method.  

Fortunately, all the standard procedures to compute p-val-

ues for hypothesis tests have been programmed in user-

friendly statistical software. Thus a researcher needn’t under-

stand the mathematical details of how to compute p-values. 

Instead, if a researcher knows the name of the appropriate test, 

then he or she can easily compute a correct p-value for a rela-

tionship between the variables by supplying the relevant data 
and a few simple instructions to the appropriate software, and 

then “running” the software. The software will analyze the 

data, apply the requested test, and compute the correct p-value 

from the data and will also compute various other important 

statistics. Thus we need only understand the underlying as-

sumptions—the software will look after all the math.  

If you would like to perform a statistical test for a relation-

ship between variables in a data table, but are uncertain about 

the best statistical test, and if you are at a college or university, 

then the statistical consulting group at your institution may be 

able to help. If such help is available, you can greatly decrease 
the chance of problems by consulting with them before you 

finalize your research design (i.e., well before you begin col-

lecting data) because they may be able to help you to substan-

tially improve the design. 

Many different statistical software systems can compute 

the same p-values. It is reassuring that if the various main-

stream systems all perform a well-established hypothesis test 

with the same data table, then they all report exactly the same 

p-value. They also all agree exactly about the parameter esti-

mates and about the values for each of the other well-estab-

lished statistics pertaining to the analysis. 

The conclusions of the preceding paragraph are excepting 

rare programming errors. The conclusions are also excepting 
small differences caused by computer rounding errors. These 

extremely small errors are generally in the last one, two, or 

three significant decimal digits in numbers that generally have 

fifteen-decimal-digit precision. 

In some unusual cases no appropriate software is available 

to compute correct p-values for the parameters of a model 

equation of a studied relationship between variables. How-

ever, if the research was done properly, in these cases it is 

usually easy for a statistician to write a simple custom pro-

gram to compute appropriate p-values through randomization 

tests or through a Monte Carlo simulation of the research sit-

uation under study. 
A thoughtful reader might sensibly ask why we don’t 

compute the probability that a parameter will have the exact 

value that it has. The answer is that the probability that a pa-

rameter has a particular exact value in a continuous possible 

range of values can be shown to be always zero. Therefore, 

we can only compute the probability that the parameter esti-

mate lies in some range of values.  

We could (under various assumptions) compute the prob-

ability that the parameter lies in a small range around its esti-

mated value, but then we must specify the width of the range, 

which is theoretically possible, but seems arbitrary. We could 
also compute the probability density under the null hypothesis 

at the estimated value, although that isn’t done, perhaps be-

cause it is less intuitive for many people. Instead of the pre-

ceding two approaches, we compute the probability (under the 

assumption that the null hypothesis is true) for the range of all 

values that are as far as or farther than the parameter estimate 

is from the null value. This approach is sensible because it 

helps us to control the false-positive error rate, as discussed 

in section 6 of the body of this paper. 

The modern use of the p-value to detect relationships be-

tween variables is an amalgamation and an evolution of the 

work of John Arbuthnot (1710), Daniel Bernoulli (1734), Karl 
Pearson (1900, 1904), William Sealy Gosset (1908), Ronald 

Aylmer Fisher (1925, 1935), and coauthors Jerzy Neyman 

and Egon Sharpe Pearson (1928, 1933a, 1933b). Modern 

technical views of statistical hypothesis testing and statistical 

inference are discussed by Casella and Berger (2002), Leh-

mann and Romano (2005), and Cox (2006). 

B.8. The Critical p-Value 

As noted in the body, researchers often specify a “critical” p-

value. This is the value that the p-value obtained in a research 

project must be less than or equal to before we will conclude 

that we have (in the absence of a reasonable alternative expla-

nation) reasonable evidence that the relationship between var-
iables we are studying exists in the population—enough evi-

dence to allow us to reject the null hypothesis. By convention, 

researchers often use a critical p-value of 0.05 or 0.01, though 

some use and recommend lower critical p-values, as discussed 

below in appendix E. Of course, regardless of which critical 



 Supplementary Material: The p-value is best 25. 

p-value a researcher appeals to in reporting and interpreting 

his or her research, each individual reader of the research re-

port is free to use their own critical p-value in interpreting the 

research. 

The critical p-value is sometimes referred to as the “sig-
nificance level” of the statistical test and is sometimes sym-

bolized by the Greek letter alpha, 𝛼. The critical p-value is 

also sometimes referred to as the “alpha level”. However, 

these terms are arguably inferior to the term “critical p-value” 

because they carry less explanatory content. 

It is important to remember that if a particular p-value is 

less than the critical value and if therefore a report of a puta-

tive relationship between variables is published in a research 

journal, this doesn’t imply that the studied relationship be-

tween the variables definitely exists, for it may reflect a false-

positive error. All that it implies is that in the opinion of the 
editors and referees who reviewed the paper, the evidence is 

strong enough that it is sensible to publish the results of the 

research project so that other researchers can know about the 

results. If other researchers think that the results are im-

portant, then they will attempt to replicate and extend the re-

sults. If the replications are successful, this strengthens the 

evidence that the relationship exists in the population. 

As noted in the body, the procedure of computing a p-

value and then determining whether it is less than or equal to 

the critical p-value is a statistical hypothesis test of the re-

search hypothesis. This is also often referred to as “statistical 
inference” because we are making tentative inductive infer-

ences from the data about effects in the underlying popula-

tion. 

As a convention, it is sensible to work with p-values that 

are rounded to two significant digits. This is sensible because 

more significant digits generally aren’t meaningful, as can be 

seen by studying the typical variation that occurs in p-values 

if a research project is performed over and over, as illustrated 

below in appendix B.13. Using only one significant digit ar-

guably isn’t precise enough to instill confidence. 

B.9. Positive Results and Negative Results 

As noted in the body, if we compute a p-value in a proper test 

of a research hypothesis using appropriate scientific research 
data, then there are only two possible outcomes of the test, 

either a “positive result” (when the p-value is less than or 

equal to the critical p-value) or a “negative result” (when the 

p-value is greater than the critical p-value. 

A positive result implies (in the absence of a reasonable 

alternative explanation) that we have good evidence of the ex-

istence of the effect or phenomenon we are looking for—good 

evidence that the research hypothesis is true—typically good 

evidence that the relevant relationship between variables ex-

ists in the population.  

In contrast, a negative result implies that we have found 
no good evidence of the existence of the effect or phenome-

non we are looking for. 

We can also obtain a negative research result if we initially 

obtain a positive result, but then we discover a reasonable al-

ternative explanation for the result. The reasonable alternative 

explanation turns the positive result into a negative result be-

cause the alternative explanation implies that the result is 

equivocal, and scientific research strives to be decisive. 

Consider an example of negative results: In the 1950’s 

some medical practitioners strongly believed (based on infor-
mal clinical experience) that laetrile (derived from apricot 

pits) could cure cancer. This led to initial public excitement 

about laetrile. These informal positive results led to a formal 

experiment (published in 1982) to look for evidence of a rela-

tionship between laetrile and cancer. But the experiment ob-

tained a negative result—it found no good evidence of a rela-

tionship between the amount of laetrile administered to cancer 

patients and the amount of cancer in the patients. And virtu-

ally all other careful research to study the effects of laetrile on 

cancer has also obtained a negative result. Therefore, all 

mainstream medical researchers now believe that there is no 

beneficial relationship between laetrile and cancer in cancer 
patients (National Cancer Institute, 2018).  

Though negative results occur often, we rarely hear about 

them. This is because negative results are generally uninter-

esting, only telling us that the research project failed to find 

what it was looking for. Scientists and the public are much 

more interested in positive results in scientific research—re-

sults in which a new effect or phenomenon is discovered. For 

example, the general interest in positive results was reflected 

in the initial excitement about laetrile. Positive results (when 

they are correct) often lead to useful applications (e.g., a cure 

for cancer). But negative results usually lead nowhere. 
In view of the lack of usefulness of negative results, and 

in view of the many positive results that are vying for the lim-

ited space in scientific journals, most scientific journals will 

almost never publish the report of a research project whose 

main finding is a negative result. This is sometimes a source 

of frustration for researchers who believe that their negative 

results are important. Appendix K discusses journals and reg-

istries that do provide information about negative results. Ap-

pendix L discusses some instructive exceptions to the general 

rule that negative results won’t be accepted for publication in 

a scientific journal. 

B.10. False-Positive and False-Negative Errors 

Regardless of which approach we use to help us to decide 
whether a relationship exists between variables, we must take 

account of the possibility of false-positive and false-negative 

errors. As noted, a false-positive error occurs if (through 

chance or through some other reason) we obtain a positive re-

sult and therefore conclude that a relationship exists between 

variables, but behind the scenes no detectable relationship ex-

ists between the variables in the population. Using the termi-

nology of signal detection theory, a false-positive error is 

sometimes called a “false alarm”. 

If a research project makes a false-positive error, then the 

researcher often doesn’t recognize this at the time. Instead, 
the researcher generally believes that the positive result im-

plies that the research hypothesis is true. The researcher be-

lieves this because that is what he or she is trying to prove. So 

the researcher generally has an understandable and inescapa-

ble bias in favor of the research hypothesis. 
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False-positive errors are costly in the sense that if a false-

positive error is published, and if the result is important 

enough, then this will lead other researchers to try to replicate 

the research finding to confirm and extend our knowledge 

about the effect. But if the original result is a false-positive 
error, then this replication research merely amounts to a wild-

goose chase that necessarily must fail—an undesirable (but 

once the error is published, unavoidable) waste of resources. 

It is theoretically possible to compute the rate of occur-

rence of false-positive errors in a scientific discipline. This 

rate depends on (a) the rate of study of true research hypoth-

eses in the discipline, (b) the average critical p-value used in 

the discipline, and (c) the average power of the statistical tests 

used in the discipline (Jager and Leek 2014, fig. 1). This de-

pendence is illustrated in figure B.1. 

 

Figure B.1. A graph showing the percentage of statis-

tically significant results that reflect false-positive er-

rors in research projects in a discipline (e.g., in medi-

cal research) as a function of the percentage of studied 

research hypotheses that are true in the discipline. The 

R program to generate this graph with an explanation 

of the logic is in the supplementary material for this 

paper. 

The three curving lines on the graph show how the percentage 

of positive results that are false-positive errors in a scientific 

discipline depends on the percentage of studied research hy-

potheses that are true in the discipline. The lines show this 

function for three different hypothetical averaged statistical 

powers of the statistical tests performed in the discipline. (The 

power is assumed to be computed across all the research pro-

jects in the discipline when the research hypothesis is at least 

minimally true.) For example, if the average power of statis-

tical tests in a discipline is 0.7, and if the average critical p-

value used in the discipline is 0.03, then the dashed red line 
shows the relationship between the percentage of true re-

search hypotheses and the percentage of false-positive errors.  

The vertical line at 25 on the horizontal axis of the graph 

implies that if 25% of the research hypotheses that are studied 

in a research discipline are actually true, and if the average 

power of statistical tests in research projects in the discipline 

is 0.7, and if the average of the critical p-values used in the 

research projects in the discipline is 0.03, and if there are no 

extenuating factors, then roughly 11% of the positive research 

results in the discipline will (of mathematical necessity) be 

false-positive errors. 

The graph is based on the assumption that the “average” 

critical p-value used in all research in the discipline is 0.03. 
However, the graph can be readily redrawn for another as-

sumed average critical p-value and will be similar. (The lower 

the average critical p-value used in a discipline, the closer the 

three lines move to the lower left corner of the graph.) 

As noted, the graph has three predictor variables associ-

ated with it: the percentage of research hypotheses studied in 

the discipline that are true, the average critical p-value in the 

discipline, and the average power in the discipline. Unfortu-

nately, we generally can’t use the graph to determine the per-

centage of positive results that are false-positive errors for a 

given scientific discipline because we generally don’t reliably 

know the value of any of the three predictor variables for the 
graph for the discipline. However, the graph is still useful be-

cause it helps us to see how things work. 

The graph is based on the assumption that research is done 

without other types of error beyond false-positive and false-

negative errors due to chance. However, various researcher 

errors (e.g., cherry picking [see below], incorrect analyses, 

carelessness, fraud) can occur in scientific research. These er-

rors have a net effect of causing the point for a given scientific 

discipline to be somewhat different from its theoretical value 

on the graph.  

Ioannidis (2005) suggests that more than half of the re-
search findings published in medical research articles reflect 

false-positive errors. The horizontal line at 50 on the vertical 

axis shows that this will be the case if all positive results are 

published and if the percentage of studied research hypothe-

ses in medical research that are true is less than around 4.1% 

and if the average power of statistical tests in medical research 

projects is around 0.7 and if, on average, medical research 

projects use a critical p-value of 0.03, and if there are no re-

searcher errors. However, the preceding assumptions about 

the power and the critical p-value may be unrealistic. Also, 

researcher errors also cause some false-positive errors in med-

ical research. Thus the percentage of studied research hypoth-
eses that are true in medical research could be greater than 

4.1%, but still yield a 50% false-positive error rate. 

Fortunately, it isn’t necessary to know the rate of occur-

rence of false-positive errors in a scientific research disci-

pline. This is because regardless of the rate of occurrence of 

the errors in the discipline, we can identify and eliminate the 

errors through appropriate replication, as discussed in section 

4 in the body of this paper. All potentially important research 

results must be replicated before we can trust them because 

errors happen. 

If we perform many hypothesis tests in a research project 
(as often occurs in modern data analysis with “big data”) and 

if the null hypothesis is sometimes true (which is often the 

case, at least in effect), then false-positive errors become more 

problematical merely because we are performing so many hy-

pothesis tests. For example, if we use the standard approach 

with a critical p-value of 0.05, then this implies that (even if 

we do everything properly) a false-positive error will occur 

roughly 5% of the time when there is (at least in effect) no 
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relationship between the relevant variables. Therefore, expe-

rienced researchers who perform many hypothesis tests in a 

research project use special procedures to control the rate of 

false-positive errors, as discussed by Benjamini and 

Hochberg (1995) and Efron and Hastie (2016, ch. 15). 
The preceding paragraphs discuss the idea of a false-pos-

itive error in a scientific research project. In a similar serious 

problem, research projects sometimes make false-negative er-

rors. As noted in the body, a false-negative error occurs if we 

obtain a negative result and therefore conclude that we have 

no evidence of the existence of a relationship between a pair 

(or larger set) of variables when, in fact, a relationship of the 

hypothesized form actually does exist in the population. A 

false-negative error is sometimes called a “failed alarm”. 

The probability of a false-negative error for a given statis-

tical test for a given effect size is related to the power of the 

test. The greater the power, the lower the probability of a 
false-negative error. In fact, if the underlying assumptions are 

properly satisfied, then for a given effect size, 

False-negative error probability = 1 − Power. 

As suggested in the body, we can reduce the rate of false-

positive errors by using a lower critical p-value, but this gen-

erally increases the cost of research. Similarly, we can reduce 

the rate of false-negative errors by using statistical test with 

higher power, but this also increases the cost. Therefore, we 

must compromise to contain costs. Diligent researchers plan 

their research projects to yield an efficient compromise be-

tween positive results, false-positive errors, negative results, 
false-negative errors, and research costs. In practice, this 

amounts to (a) using a critical p-value equal to the critical p-

value that is standard in the field of study, (b) maximizing the 

power of the statistical tests under the available resources 

through careful research design, and (c) and ensuring that 

there will be no reasonable alternative explanations of the re-

sults that will invalidate the work, also through careful re-

search design. Careful research design is the key to optimiz-

ing scientific research. 

Appendix M below contrasts false-positive and false-neg-

ative errors with parameter sign errors (“Type S”) and param-

eter magnitude errors (“Type M”) in scientific research. 
Colquhoun (2017) discusses a conceptually sensible sta-

tistic that he calls the “false-positive risk”. (He omits the hy-

phen, but it is useful because it eliminates a minor ambiguity.) 

The false-positive risk in a scientific research project is the 

estimated probability that a positive research result obtained 

in the project is a false-positive error.  

The false-positive risk is closely related to the variable 

shown on the vertical axis of the graph in figure B.1 above. 

However, Colquhoun’s approach is based on first determining 

a prior probability that the null hypothesis is true. This is akin 

to choosing a particular percentage on the horizontal axis of 
the graph. Then other assumptions are made and then a math-

ematical procedure similar to the procedure behind the graph 

is used to calculate the estimated value of the variable on the 

vertical axis of the graph—the estimated percentage of posi-

tive results that are false-positive errors, which is sensibly 

called the false-positive risk. 

Colquhoun’s approach uses the likelihood ratio in its com-

putations. It is noteworthy that Colquhoun defines the likeli-

hood ratio on page 7 of his paper as 𝑦1/2𝑦0, which can be 

expressed in terms of the relevant probability density func-

tions as 𝑓1(𝑥)/2𝑓0(𝑥). This is different from the standard def-

inition of the likelihood ratio, which is 𝑓1(𝑥)/𝑓0(𝑥), as dis-

cussed by Cox (2006, p. 91). Both Colquhoun and Cox use a 

reciprocal version of the likelihood ratio discussed in section 

5.4 of the present paper, which is noteworthy to reduce con-

fusion, though it has no substantive effect on the relevant 

ideas. 

As noted, Colquhoun’s approach is (in effect) based on 

choosing a point on the horizontal axis of figure B.1. How-

ever, as Colquhoun notes (2017, p. 7), we rarely (if ever) have 
a valid value for the prior probability that the null hypothesis 

is true or false. This is because failures to obtain a positive 

result in a scientific research project generally aren’t tracked 

in a scientific discipline because many members of the disci-

pline have sensibly judged that the difficult task of tracking 

these failures would be unreliable and isn’t worth the effort. 

(This might change if mandatory research registries become 

the norm, as discussed in appendix K.) Without the tracking 

information, we can’t determine the correct value on the hor-

izontal axis for a scientific discipline. And, in general, we can 

only guess the value of this percentage. 

Thus, arguably, if we wish to consider these concepts, it is 
sensible to use the graphical approach shown in figure B.1 and 

not try to guess (or somehow otherwise determine) the prior 

probability that the null hypothesis is true in a particular re-

search situation to enable us to compute the false-positive 

risk. If we use the graphical approach, this allows us to see the 

entire range of possibilities instead of focusing on a specific 

and possibly unrealistic case. 

Colquhoun’s figure 4 shows graphs of the relationship be-

tween his computed false-positive risk and the obtained p-

value. The lines for different sample sizes all cross each other 

on each graph. While not a disproof of Colquhoun’s approach, 
the crossing lines are counterintuitive because isobar-like 

lines generally don’t cross one another on a graph. 

Colquhoun proposes in section 7 of his paper a sensible 

way around the problem that we don’t know the percentage 

of studied research hypotheses that are true in a discipline. He 

suggests that we define a sensible critical value for the false-

positive risk, and he proposes 0.05 for this value. Then, using 

the data at hand, we compute the prior probability that the null 

hypothesis is false that must obtain to enable us to obtain this 

false-positive risk. If this computed prior probability is low 

enough (e.g., less than a critical value of 0.5), then we can 

conclude according to this criterion that we have enough evi-
dence that the effect is real. This is thus a way of detecting 

relationships between variables, performing the same func-

tion as the nine measures discussed in the body of this paper. 

It is easy to show that Colquhoun’s approach is in a mon-

otonic relationship with the effect size when other factors are 

held constant. Therefore, we can, through the choice of criti-

cal values, calibrate Colquhoun’s approach to behave equiva-

lently (in decreeing a positive or negative result) with the nine 

measures discussed in the body. Colquhoun’s approach is 

conceptually more complicated than the other measures in the 
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sense that it has effectively two critical values—a critical 

value for the false-positive risk and a critical value for the 

prior probability that the null hypothesis is false. 

For comparison, if we use Colquhoun’s approach with a 

critical value of 0.05 for the false-positive risk and with a crit-
ical value of 0.5 for the prior probability that the null hypoth-

esis is false, then this leads to a much stricter statistical test 

than a test based on a critical p-value of 0.05. This implies 

that the statistical tests based on Colquhoun’s critical values 

will make substantially fewer false-positive errors, but sub-

stantially more false-negative errors than the statistical tests 

based on a p-value with critical value of 0.05.  

Of course, we can calibrate Colquhoun’s approach to be-

have equivalently to the other approaches in deciding whether 

we have enough evidence to reject the null hypothesis. We do 

this by adjusting Colquhoun’s critical values. 

Colquhoun suggests that a researcher makes “a fool” of 
him- or herself if their research commits a false-positive error 

(2017, pp. 3). However, research that commits a false-positive 

error doesn’t somehow turn the researcher into a fool. Instead, 

a false-positive error only shows that the researcher was either 

an unfortunate victim of chance or was somewhat careless—

it may be difficult to tell which.  

B.11. Reasonable Alternative Explanations 

As noted, reasonable alternative explanations play a key role 

in scientific research. Most scientists won’t accept a positive 

conclusion suggested by a scientific research result if there is 

a reasonable alternative explanation for the result. Instead, 

they will ask for or perform further research to determine 
which of the possible explanations is the correct explanation. 

There is a wide range of possible standard types of reason-

able alternative explanations of a research finding, including 

hidden variables, confounding, data-collection errors, data-

analysis errors, equipment failure, and scientific fraud. Also, 

each field of study typically has certain unique reasonable al-

ternative explanations for research findings that must be con-

sidered.  

It is noteworthy that outright fraud in scientific research is 

rare because most researchers know that all consequential sci-

entific fraud is exposed sooner or later due to the investigative 

nature of science. And researchers know that fraud leads to 
severe consequences, typically loss of employment, loss of 

respect, and possible litigation. 

Although fraud is rare, other types of reasonable alterna-

tive explanations often arise in scientific research. Research-

ers take careful pains to try to ensure that no reasonable alter-

native explanations can be proposed to explain away their re-

search findings.  

Sometimes there is a correct reasonable alternative expla-

nation for a research finding, but the explanation is undetect-

able because the report of the research project omits the rele-

vant information. For example, suppose that a researcher (in 
good faith) performs a research project over and over, each 

time adjusting the research conditions somewhat, hoping to 

find a set of conditions in which the effect under study will be 

observed. But suppose that behind the scenes the research hy-

pothesis is false and thus the null hypothesis is true. If the re-

searcher performs the research project enough times, then the 

definition of the p-value implies that some of the instances 

will obtain statistically significant results. This phenomenon 

is illustrated graphically in the left-hand panel in the figure in 
appendix B.13 below.  

If in this situation the researcher reports only a single in-

stance of the research project in which the significant result 

was obtained and doesn’t report the fact that the research pro-

ject was performed over and over, then (if other aspects of the 

research report are satisfactory) readers of the report will in-

terpret the positive result as good evidence that the research 

hypothesis is true even though there is a reasonable alternative 

explanation for the result and the result is actually a false-pos-

itive error.  

Selecting and reporting positive results from a large set of 

research results without reporting the negative results is called 
“cherry picking” the results. This p-value usage error, which 

is also called “data dredging”, is sometimes committed by less 

experienced or less vigilant researchers in their (dedicated but 

poorly reasoned) efforts to obtain a positive result.  

More generally, the practice of “p-hacking” is any proce-

dure that takes steps to obtain lower p-values, but violates the 

assumptions underlying the p-value. We reduce these errors 

in scientific research by ensuring that all of the underlying as-

sumptions of our statistical procedures are adequately satis-

fied and by trying to transparently document everything im-

portant that we do pertaining to the research. A commitment 
to transparency makes a researcher’s work more credible and 

wins his or her peers’ respect. The importance of full report-

ing and transparency in scientific research reflects Principle 4 

in the ASA Statement on p-values (Wasserstein 2016). 

If a researcher has a strong hunch about a relationship be-

tween variables, then it is fully permissible for the researcher 

to perform a research project to look for the relationship over 

and over, adjusting the conditions each time in the hope of 

finding conditions that yield a positive result. But if the re-

searcher finds some conditions that appear to yield a positive 

result, then he or she should independently replicate this re-

sult with these conditions one or more times to confirm that 
the positive result hasn’t occurred through mere chance. Some 

researchers don’t do that, and instead publish a report of their 

positive result, to their later regret when their false-positive 

finding can’t be replicated. 

We can reduce false-positive errors caused by p-value us-

age errors through proper training of researchers. The training 

should point out that false-positive errors about important ef-

fects lead to a waste of resources. Therefore, an egregious 

false-positive error can lead to strong criticism or censure of 

the researcher by the research community.  

For example, Stanley Pons and Martin Fleischmann were 
figuratively drummed out of chemistry for their apparent 

false-positive cold-fusion error, which sent many interested 

researchers on a costly wild-goose chase, as discussed by 

Huizenga (1993). Their now-believed-incorrect observation 

of excess energy from their cold-fusion cells may have been 

caused partly by cherry picking and partly by measurement 

problems.  
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The Pons and Fleischman error was egregious because 

their report describes several experiments that were highly 

successful in demonstrating cold fusion. But nobody has been 

able to reliably replicate any of these experiments, though 

many researchers have tried, at significant expense. 
As noted in the body, the relevant research community de-

cides whether a research finding is believable through evolv-

ing informal consensus in the community through formal and 

informal discussion about the finding and about attempts to 

replicate it. If nobody in the research community can think of 

a reasonable alternative explanation for the finding, and (as is 

usually required) if the finding has been successfully repli-

cated, then the community will, in time, accept the finding. 

What is the relationship between the p-value and the idea 

of a reasonable alternative explanation? The p-value (and the 

various other measures of weight of evidence that an effect is 

real) is merely a sensible method to tentatively eliminate 
chance as a reasonable alternative explanation of evidence 

that an effect observed in scientific research is real in the en-

tities in the population of entities under study. 

The importance of considering reasonable alternative ex-

planations in drawing conclusions about scientific research 

reflects Principle 6 in the ASA Statement (Wasserstein 2016). 

B.12. The Asymmetry of Statistical Hypothesis 

Testing 

In scientific research we can never conclude that a given null 

hypothesis is exactly true. This is because even if the null hy-

pothesis is exactly true, we can’t empirically demonstrate that 

it is true. We can’t demonstrate that there is no effect at all 

because it is always possible that an effect is present in the 
population, but it is too small for us to detect with our current 

research approach and measuring instruments, but we will de-

tect it later.  

Thus, for example, we can’t somehow empirically demon-

strate that extrasensory perception is exactly impossible. So 

experienced researchers never “accept” a null hypothesis. 

However, we assume that a given null hypothesis is true until 

(if ever) someone reliably proves otherwise. Thus we assume 

that extrasensory perception is exactly impossible because 

this is a sensible efficient (parsimonious) way to proceed.  

In a related but opposing idea, some researchers and stat-

isticians believe that the null hypothesis is never precisely true 
in a population (Berkson 1938; Bakan 1966; Colquhoun 1971, 

p. 95; Tukey 1989, p. 176, 1991, p. 100; Cohen, 1994, p. 

1000; Jones and Tukey 2000; Nickerson 2000, p. 263). How-

ever, this belief is speculative because it can’t be empirically 

confirmed. This is because it is impossible to study every null 

hypothesis in the universe and to somehow confirm that they 

are all false.  

With strong faith in analysis, Rao and Lovric (2016) at-

tempt to prove analytically that every null hypothesis in the 

universe is false. Unfortunately, their proof is tenuous due to 

the tenuous links between the set of analytical premises they 
use and the real world. 

Furthermore, despite some researchers’ belief to the con-

trary, some null hypotheses are probably exactly true in na-

ture. For example, many readers will agree that there is almost 

certainly no direct relationship in people between carrying a 

“lucky” coin and having good luck. (There may be an indirect 

relationship for some people, such as in the sense that believ-

ing in a coin causes them to positively pursue more opportu-

nities, which leads them to better “luck”.) So in this example 
the null hypothesis (that there is no direct relationship in peo-

ple between carrying a certain coin and good luck for them) 

is probably absolutely true.  

But again, we can’t know with certainty that the “lucky 

coin” null hypothesis is true. And it is conceivable (though 

most of us think it highly unlikely) that a person might obtain 

an amount of (real) extra good fortune if he or she carries a 

lucky coin. That is, it is conceivable that some “superstitious” 

people have correctly observed this (real) relationship be-

tween variables—a relationship that the rest of us think 

doesn’t exist. And these “superstitious” people wisely use 

their knowledge of the relationship to increase their good luck 
(by carrying lucky coins).  

As scientists, we assume that anything that is logically 

possible (even a truly lucky coin) is possible because we can 

learn more if our minds are open to any logically possible hy-

pothesis. But we also always assume that the relevant null hy-

pothesis is true until (if ever) someone demonstrates other-

wise.  

The lucky coin example illustrates the asymmetry of sta-

tistical hypothesis testing—we can never use empirical re-

search to prove that a null hypothesis is true. But we can use 

empirical research to prove (beyond a reasonable doubt) that 
a given null hypothesis is false (assuming, of course, that the 

hypothesis actually is false). 

B.13. The Distribution of the p-Value Under the Null 

and Research Hypotheses 

The logic behind the p-value implies that if we were to per-

form the same scientific research project over and over, each 

time using a fresh sample of entities from the population, and 

if we were to compute the p-value for the same hypothesis test 

each time, then the value of the p-value would generally be 

different each time. It is instructive to study the distribution 

of the p-values that (under standard conditions) we will get if 

we repeat the same research project over and over. In other 

words, we study the relative frequency with which different 

p-values will occur. Of course, the distribution of p-values we 
get will depend on whether the research hypothesis or the null 

hypothesis is true. 

It is easy to show that if we repeat a research project over 

and over, and if the null hypothesis is true (i.e., the relevant 

“effect size” is zero in the population), and if the assumptions 

underlying the p-value are satisfied, then the p-values will oc-

cur in a “uniform” distribution. This uniform distribution is 

illustrated in the left-hand histogram in figure B.2. 
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Figure B.2. Two histograms, each showing the distri-

bution of the p-values that we will obtain if we repeat 

a particular research project over and over, each time 

collecting fresh data. Each histogram was obtained 

through a computer simulation. The SAS program to 

generate the underlying data and the R program to 

draw the figure are in the supplementary material for 

this paper. 

The scale of the horizontal axis of each histogram in the figure 

ranges between 0.0 and 1.0 because that is the possible range 

of values of a p-value. The scale on the vertical axis of the 

histograms is a scale of percentages ranging between zero and 

50%. If we add together the heights of the 20 bars on each 

histogram, the sum of the heights of the bars on each histo-

gram is exactly 100%.  

The histogram on the left summarizes the p-values in a 

data table that was generated to contain roughly 2.5 million 

simulated p-values under the assumption that the null hypoth-

esis is true (i.e., the effect size is 0.0). Similarly, the histogram 
on the right summarizes the p-values in a data table that was 

generated to contain roughly 2.6 million simulated p-values 

under the assumption that the research hypothesis is true, and 

the effect size is 2.0. 

(Technical details: The effect size in this example is the 

value of the non-centrality parameter of the noncentral t-dis-

tribution that was used to generate the data behind each histo-

gram. The two histograms in the figure are based on a statis-

tical test of a coefficient in a standard linear regression anal-

ysis, assuming the t-statistic for the coefficient has 30 degrees 

of freedom. However, similar histograms can be generated 
through a computer simulation for the p-values for any math-

ematically describable statistical hypothesis test.) 

The histogram on the left shows that if the null hypothesis 

is true in the underlying population (and if the underlying as-

sumptions of the computation of the p-value are adequately 

satisfied), then we can expect that the p-values we obtain if 

we repeat the research project over and over will be spread 

perfectly evenly between 0.0 and 1.0. (The almost impercep-

tible deviations from perfect uniformity in the left-hand his-

togram are artifacts of the discrete and thus slightly imperfect 

computer procedure that was used to generate it.) 

The height of each bar on the left-hand histogram is theo-

retically exactly 5%. Thus this histogram tells us that in re-

search projects in which the null hypothesis is true, if we di-

vide the p-value range into 20 adjacent segments of equal 

width, then it will be equally likely for these research projects 
that the p-value will lie in any one of the segments—the p-

value will lie in each segment 5% of the time. This implies 

that if the null hypothesis is true, and if the underlying as-

sumptions are satisfied, we will obtain p-values that are less 

than 0.05 exactly 5% of the time. That is, if we do everything 

properly, in research projects in which the null hypothesis is 

(unfortunately) true (or in effect true), our statistical test will 

(at random) make a false-positive error roughly 5% of the 

times that we perform the test. 

The histogram on the right is computed under the assump-

tion that the population effect size is 2.0, which implies that 

the null hypothesis is false, and thus the research hypothesis 
is true. We see that in this case if we repeat the research pro-

ject over and over (and if the underlying assumptions of the 

computation of the p-value are adequately satisfied), then the 

p-values tend to fall closer to the lower end of the range—i.e., 

closer to 0.0 than to 1.0. Clearly, this is exactly what we want 

because if the null hypothesis is false, then we want the p-

value to be low because this tells us that the null hypothesis is 

false. 

Consider the height of the leftmost bar on the right-hand 

histogram, which is the bar for the case when the p-value is 

less than 0.05. We see that the bar contains roughly 49% of 
the 2.6 million p-values behind the histogram. This bar tells 

us that, under the assumed conditions, we can expect the p-

value to be less than 0.05 roughly 49% of the time if we repeat 

the research project over and over. Thus, using the definition 

of power from section 4 in the body, the power of the statisti-

cal test in this situation is 0.49. (This power is much lower 

than the 0.90 recommended in the body.) 

The histogram on the right implies that in the research pro-

ject under discussion the p-value will be greater than 0.05 in 

roughly 100 − 49 = 51% of the time. The p-value will be 

greater than 0.05 even though the fact that the effect size is 

2.0 implies that (behind the scenes) the null hypothesis is 
false. Thus this research project would make a false-negative 

error roughly 51% of the time if we were to perform the re-

search project and over and over, each time (unfortunately) 

obtaining a p-value in the range between 0.05 and 1.00, telling 

us that we don’t have enough evidence to reject the null hy-

pothesis. 

So, in the long run, in the situation illustrated in the histo-

gram on the right, the p-value makes a false-negative error 

slightly more than half of the time. Thus a thoughtful reader 

might reasonably wonder if there might be a better way to an-

alyze the data to detect a relationship between the variables 
that would (without detriment) lead to the correct positive re-

sult more often. Unfortunately, nobody has found a better 

way, and apparently there is no better way. That is, there is no 

obvious way (for a given effect size and a given research de-

sign) to decrease the false-negative error rate without also un-

acceptably increasing the false-positive error rate. This is be-

cause the two rates are tightly bound together, both being a 
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function of (a) the design of the research project under con-

sideration, (b) the effect size, (c) the statistical procedure 

(e.g., the p-value) we have chosen to use to decide if we have 

sufficient evidence to (tentatively) reject the null hypothesis, 

and (d) the particular critical value that we have chosen to use 
with the procedure (e.g., 0.05 for the p-value). 

Of course, the design of the research project is the key 

here. And in the research behind the right-hand histogram in 

the figure we could redesign the research project so that it has 

a more powerful statistical test, and then we would be more 

likely to find good evidence of the relationship—we would 

make false-negative errors less than 51% of the time. We can 

increase the power of statistical tests using the methods dis-

cussed in section 4 of the body. 

B.14. Do p-Values Make Publication Decisions? 

Demidenko suggests that a paper reporting a scientific re-

search project will be accepted for publication in a scientific 

journal merely if the paper has a low-enough p-value for its 
main result (2016, sec. 2). This suggestion is based on a mis-

understanding. 

As noted in section 3 in the body of the present paper and 

in appendix B.9 above, scientific journals almost always only 

publish papers that report positive results—they almost never 

publish papers that report negative results (because negative 

results are generally uninteresting). Therefore, editors often 

sensibly use a critical p-value as a screening rule to determine 

whether a result is “positive” enough to be considered for pub-

lication in their journal (Estes 1997, Cox, 2014, Jager and 

Leek, 2014). That is, a paper won’t be considered for publi-
cation unless the p-value for the main research finding in the 

paper is less than or equal to the journal’s critical p-value (typ-

ically 0.05 or 0.01).  

Thus, a low p-value in a hypothesis test for the main re-

search finding of a research project is a necessary condition 

that must be satisfied before many journals will consider a pa-

per reporting research results for publication. As illustrated by 

Demidenko, this leads some people to confuse things and to 

think that a low p-value is a sufficient condition for publica-

tion. However, a low p-value in a hypothesis test is never a 

sufficient condition for publication of a paper in a reputable 

journal.  
Thus though p-values often participate in publication de-

cisions, they don’t make publication decisions. Instead, the 

editor of a journal will decide to accept a paper for publication 

only if (with rare exceptions) it has a sufficiently low p-value 

for its main finding and if the paper satisfies the journal’s 

many other mandatory criteria for acceptance. These include 

the criterion that the main research finding must be “interest-

ing” and the criterion that (except in unusual circumstances) 

there must be no reasonable alternative explanation for the 

low p-value for the main research finding. 

Thus the p-value is merely one of many criteria that re-
searchers and journals use to evaluate scientific research re-

sults. And if we are evaluating the results of a new research 

project, then we can consider the p-value criterion at any point 

during the evaluation. However, it is sensible to consider the 

p-value criterion first because this step can be done quickly 

(often in less than five minutes). And if the p-value obtained 

by the main result in a research project is greater than the crit-

ical p-value, then this implies that the result is inconclusive. 

Then it is generally sensible for a journal to abandon further 

consideration of the result because the high p-value implies 
that the result may merely reflect noise. That enables the jour-

nal to escape from performing the long process of considering 

other criteria in evaluating the result, which saves the jour-

nal’s time. 

The fact that journals generally apply the p-value criterion 

first in evaluating a research project leads some statisticians 

and researchers to think that the p-value has an undeserved 

special role, causing it to take priority over the “currently sub-

ordinate factors” (McShane, Gal, Gelman, Robert, and Tack-

ett, 2018, p. 2). But the p-value doesn’t have an undeserved 

role. And it is no more important than the other factors or cri-

teria that researchers and journals use to evaluate scientific 
research results. We apply the p-value criterion first merely 

because that saves our time. 

B.15. The Publication and Correction of False-

Positive Errors 

As noted in appendices B.8 and B.10, some scientific research 

results reflect false-positive errors. Currently, there is sub-

stantial interest in the problem of the publication of false-pos-

itive errors in scientific research, with some authors viewing 

the publication of these errors as a “replication crisis”, a scan-

dal, as discussed by Ioannidis (2005), Palus (2018), and in a 

Nature editorial (2018). 

Appendix B.10 discusses the rate of occurrence of false-

positive errors in positive results (as opposed to in all research 
results, positive and negative) in scientific research. The rate 

of publication of false-positive errors in each field will be 

similar to the rate of occurrence of false-positive errors in pos-

itive results. This is because generally only positive results are 

published, as discussed in appendices B.8 and B.9, and be-

cause, without the help of replication, false positive results are 

generally indistinguishable from true positive results.  

As discussed in appendix B.10, it is difficult (arguably im-

possible) to directly determine the rate of occurrence of false-

positive errors in scientific research in a given field. There-

fore, the rate of publication of false-positive errors in a field 

can (apparently) only be determined (to a limited extent and 
in hindsight) by the study of failures to replicate published 

positive results in the field. 

It is important to note that a single failure to replicate a 

positive result generally isn’t definitive in determining that 

the earlier research reflects a false-positive error. This is be-

cause there are usually several possible reasons why a repli-

cation attempt failed. For example, the inevitable slightly dif-

ferent research conditions between the original research and 

the replicating research may lead to a negative result in the 

replicating research. Also, certain types of carelessness in re-

search make it likely that a research project will obtain a neg-
ative result. Also, a failure to replicate a positive result 

amounts to a negative result and, as noted in appendix B.9, 

journals generally don’t publish negative results because they 
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are less interesting. These ideas explain why journals are gen-

erally unwilling to publish a report of a single failure to repli-

cate a positive research finding.  

But if negative results aren’t published, then how can the 

research community know about failures to replicate a posi-
tive result to expose it as a false-positive error? The answer is 

that news about failures to replicate an interesting positive re-

sult spreads informally. This is because scientists are always 

interested in knowing about these failures in their field. (But 

scientists are generally less interested in the details.)  

News about failures to replicate is spread in personal dis-

cussions, in social media, in newsletters, at scientific meet-

ings, or in journal articles or letters to the editor summarizing 

the results of several independent failures to replicate a given 

effect. Also, a few important negative results are published in 

their own journal articles, as discussed in appendix L. Scien-

tists have recognized that this form of communication is suf-
ficient to identify and correct false-positive errors. This is be-

cause scientists are devoted to the truth, so they don’t want to 

believe false hypotheses. So the tide quickly turns against a 

positive result (false or not) if word gets around that nobody 

can replicate it.  

The inevitability of some false-positive errors in published 

research results leads experienced researchers to consider new 

positive research results with polite skepticism until the re-

sults are properly replicated in independent research. Of 

course, other researchers in the field are quick to try to repli-

cate any important new relationship between variables as they 
try to enhance knowledge about the phenomenon. 

It is noteworthy that if a false-positive error occurs, and if 

the result is published, but the result is unimportant, then no-

body may try to replicate the result. Therefore, the false-pos-

itive result will remain uncorrected in the research literature. 

This is unfortunate, but doesn’t do much harm (because the 

result is unimportant).  

Appendix C: Some Criticisms of the p-Value 

This appendix discusses some noteworthy criticisms of the p-

value. (The criticisms also sometimes apply to the other 

measures of the weight of evidence.) Let us first consider 

some criticisms proposed by McShane, Gal, Gelman, Robert, 
and Tackett (2018). 

As noted in appendix B.12, it has been suggested that the 

null hypothesis may never be precisely true in nature. If the 

null hypothesis is never precisely true, then McShane et al. 

suggest that this implies that the null hypothesis is “implausi-

ble” (2018, p. 4). Therefore, perhaps hypothesis testing is il-

logical.  

Expressing the same ideas at a more statistical level, if the 

null hypothesis is true, then the value of the relevant parame-

ter of the model equation in the population is exactly equal to 

the null value, which implies an effect size of exactly zero. 
But (despite the lucky coin example in appendix B.12) some 

statisticians think (perhaps due to their sensible intuitions 

about variability of measured values) it is implausible that an 

effect size could ever be exactly zero in a population. 

In considering these ideas, we can first note that the null 

value of a standard parameter lies in the middle of a highly 

plausible range of values. So even if it may be implausible 

that the effect size could ever be exactly zero, the null value 

lies in a plausible range. Thus, conceptually, the null value is 

equally as plausible as any other value in the range.  

But, having established that, we can still ask whether the 
precise null hypothesis might ever be true in nature. And (de-

spite the lucky coin example) it appears that the best we can 

answer is that it is conceivable that the null hypothesis might 

never be precisely true. This leads to the question: What hap-

pens to the p-value and hypothesis testing if the null hypoth-

esis is never precisely true?  

Perhaps surprisingly, it is irrelevant for the p-value and 

hypothesis testing whether the null hypothesis is ever pre-

cisely true. This is because we don’t care whether it is ever 

precisely true because the null hypothesis is merely specify-

ing a useful hypothetical situation. In many cases, the null hy-

pothesis is false, but the effect is quite weak and therefore the 
effect is completely undetectable with our current measure-

ment systems. In these cases the null hypothesis is in effect 

true, as discussed above in appendix B.3.  

Thus even though the null hypothesis may never be pre-

cisely true, experience with negative results in scientific re-

search suggests that the null hypothesis is still in effect true in 

a substantial proportion of cases. However, having estab-

lished that point for clarity of concepts, it is noteworthy that 

we don’t care about whether a given null hypothesis is either 

precisely true or in effect true—we only care whether the null 

hypothesis is clearly false. 
If we can empirically show (e.g., with a low p-value and 

in the absence of a reasonable alternative explanation) that a 

null hypothesis is almost certainly false, then this implies that 

the effect under study almost certainly exists the population, 

which is a standard goal of research. If we can find good evi-

dence of a new useful real effect, then this advances human 

knowledge. In doing that, it doesn’t matter whether the null 

hypothesis is ever precisely true in a population. 

Criticizing the p-value from a different direction, 

McShane et al. note that the parameter associated with the null 

hypothesis is assumed to have zero systematic error (2018, p. 

4), which may also seem implausible. However, the null hy-
pothesis is stating the hypothesized parameter value for the 

population, and the (unknown) parameter value in the popu-

lation (whether it is the null value or not) has zero error—i.e., 

it doesn’t vary. (Or, at least, it doesn’t vary within the time 

frame of most scientific research, but see appendix I below.) 

On another tack, McShane et al. (2018, p. 6) echo Rosnow 

and Rosenthal (1989), who say that dividing the scale of the 

value of the measure of the weight of evidence into two cate-

gories (i.e., “statistically significant” and “not statistically sig-

nificant”) has “no ontological basis”. By this they (correctly) 

note that the values of most of the measures of the weight of 
evidence lie on a continuum of values. And in nature there is 

no critical value dividing the continuum for a measure into 

two categories. Since the two categories of the continuum 

don’t exist in nature (except in the sense that they are invented 

by humans), it seems unnatural and thus inappropriate to these 

authors to use a critical value to break the continuum into two 

categories.  
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However, as noted in the body, it is often efficient to break 

a continuum into two categories. For example, you must be 

taller than four feet to be allowed on this ride. This criterion 

is quick and practical. Similarly, if the value of the measure 

of the weight of evidence falls beyond (or equals) the critical 
value, then (by convention, and in the absence of a reasonable 

alternative explanation), the evidence is strong enough to be 

(tentatively) believable. Therefore, if other important condi-

tions are also satisfied, the evidence is strong enough to be 

published. 

Coming from another direction, McShane et al. say that 

the use of p-values and the other measures of the weight of 

evidence encourages statisticians and researchers to use “di-

chotomous thinking” (2018, p. 7), which is clearly inappro-

priate. By this they mean that if a measure of the weight of 

evidence is on one side of (or equal to) the critical value, then 

we conclude that the effect under study exists. But if the meas-
ure of the weight of evidence is on the other side, then we 

conclude that the effect doesn’t exist.  

Applying dichotomous thinking to the existence of effects 

is inappropriate because in the case of a positive result, the 

statistical test may have made a false-positive error. Similarly, 

in the case of a negative result, the statistical test may have 

made a false-negative error. So our conclusions must be more 

tentative. So dichotomous thinking is highly inappropriate in 

deciding whether effects exist. 

In contrast, dichotomous thinking is quite sensible with 

respect to the publication of a report of a research result in a 
scientific journal. If the value of the measure of the weight of 

evidence falls beyond (or equals) the critical value and if the 

other requirements for publication are adequately satisfied, 

then it is quite sensible to decide that a report of the research 

result is worth publishing, even though the result doesn’t nec-

essarily imply that the effect exists. Publishing the report 

gives other researchers in the field the opportunity to study 

the result and (if the effect exists) gives them the opportunity 

to successfully replicate it. 

Berger and Berry (1988) criticize the p-value on the basis 

of its definition. They correctly note that the p-value tells us 

the fraction of the time that we will obtain a parameter esti-
mate (or test statistic) of interest that is as discrepant or more 

discrepant from the null value as the result that was actually 

obtained in the research if the null hypothesis associated with 

the parameter is or were true and if we were to repeat the re-

search project over and over (and if the assumptions underly-

ing the p-value are adequately satisfied).  

Berger and Berry focus on the idea of “more discrepant” 

and they suggest that we aren’t interested in parameter esti-

mates (or test statistics) that are more discrepant from the null 

value than the actual discrepancy of the parameter we have 

estimated in the research. And they suggest that we are only 
interested in the obtained estimated parameter value, and how 

discrepant it is from the null value. Therefore, they suggest 

that taking account of cases when the parameter estimate is 

more discrepant from the null value than the obtained estimate 

is illogical, and therefore the p-value is illogical. 

However, by telling us the fraction of the time the param-

eter estimate will be as discrepant or more discrepant than the 

value at hand if the null hypothesis is true, the p-value gives 

us a reasonable measure of how discrepant our result is from 

the null value. This measure is reasonable because it is mean-

ingfully comparable from one research project to the next. 

The p-value is also reasonable because the critical p-value 

that the p-value is compared against is (if used consistently 
and if everything is done properly) the theoretical fraction of 

the time that we will make false-positive errors when the null 

hypothesis is true. Knowing and controlling this fraction is 

important because false-positive errors about important ef-

fects lead to a waste of resources. So the p-value is reasonable 

in both logical and practical senses. 

In another criticism, Berger and Berry (1988) note that the 

p-value depends on the rule that we use for stopping the col-

lection of data in a research project, which is called the “stop-

ping rule”. For example, we might specify that the stopping 

rule is: We will stop collecting data after 50 entities have been 

recruited for participation in the research project. (That is, the 
sample size is a fixed value according to the research design.) 

Or we might specify that the stopping rule is: We will stop 

collecting data after we have collected data for three weeks, 

regardless of how many entities are in the sample. (That is, 

the sample size is a “random variable” according to the re-

search design.) 

Berger and Berry discuss two research projects that are 

identical except that they have different stopping rules. And 

they consider the instructive case when the two research pro-

jects both obtain exactly the same data table. They observe 

that the p-values for the same hypothesis test from these two 
research projects will generally be somewhat different. They 

illustrate this point with a carefully (and sensibly) concocted 

example in which two research projects with identical data ta-

bles but with different stopping rules yield p-values of 0.049 

and 0.085. So the result of one of the research projects is sta-

tistically significant at the 0.05 level, but the other result isn’t 

statistically significant. This difference arises between the 

two p-values even though both analyses are based on exactly 

the same data table, and the only difference is in the two stop-

ping rules. 

As Berger and Berry note, we obtain different p-values 

under the two stopping rules due to the definition of the p-
value. The p-value tells us the fraction of the time that a re-

search project will obtain a parameter estimate that is as dis-

crepant or more discrepant from the null value as the actual 

estimate at hand if the associated null hypothesis is or were 

true in the population and if we were to repeat the research 

project over and over (and if the underlying assumptions of 

the analysis are adequately satisfied). Under this definition, it 

is easy to show analytically that the correct p-value for a given 

effect in a data table will generally depend on the stopping 

rule that we use in the research project. 

The fact that the two research projects yield different p-
values for the same data (depending on the stopping rule) isn’t 

a contradiction and isn’t a shortcoming of the p-value. In-

stead, the fact is merely a mathematical consequence of the p-

value definition, a consequence especially of the idea of re-

peating the research project over and over. This consequence 

is quite reasonable, as we will see momentarily. 

Berger and Berry note that a standard Bayesian analysis 

of a data table doesn’t depend on the stopping rule, which they 
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suggest makes the Bayesian analysis more sensible. They ar-

gue that a given data table should offer the same evidence in 

support of rejecting the null hypothesis regardless of the rule 

that was used to stop the data collection. In other words, they 

imply that all the relevant evidence is in the data table, and 
there is no relevant information in how the table was obtained. 

To help us to consider this issue, we must consider our 

goal. This paper assumes that the goal in hypothesis testing is 

to find real (i.e., reproducible) effects in populations. And an 

important secondary goal is to control the rate of false-posi-

tive errors (because these errors are costly). 

If it is important to control the rate of false-positive errors, 

then it is sensible to use the p-value to detect effects because 

the p-value is directly relevant to controlling the false-positive 

error rate. That is, as noted, if we consistently use the same 

critical p-value in a set of research projects, and if we do eve-

rything properly, then the critical p-value is the fraction of the 
time that we will make a false-positive error across the re-

search projects in cases when the null hypothesis is true (and 

if the underlying assumptions of the p-value are adequately 

satisfied in each case). 

In contrast, a researcher or statistician might believe that 

it is more important to satisfy some other goal. In that case, it 

might be sensible to omit the use of p-values and instead use 

some other statistical approach that will help to satisfy the 

goal, perhaps a Bayesian approach. But, arguably, there aren’t 

any general goals in scientific research that are more im-

portant than finding interesting real effects while controlling 
the false-positive error rate (while trying to simultaneously [a] 

maximize the power of the tests, [b] obtain the model equation 

that makes the best predictions, and [c] minimize the research 

costs). 

Berger and Berry object to the p-value depending on the 

stopping rule because they think that the resulting p-value de-

pends on the researcher’s intentions (as the intentions are re-

flected in the stopping rule). That is, if the researcher intends 

or intended to stop the research project one way, then he or 

she will obtain one p-value, but if they intend or intended to 

stop it the other way, then they will obtain the other p-value, 

even though both p-values are computed from the same data. 
Berger and Berry think it is inappropriate that the p-value 

should depend on mere intentions in the researcher’s mind. 

But the p-value isn’t about intentions. It merely reports a 

fact—the fraction of the time we will obtain a result as dis-

crepant or more discrepant as the result at hand if the null hy-

pothesis is or were true and if (using the stopping rule we used 

in the research) we were to repeat the research project over 

and over (and if the underlying assumptions of the analysis 

are adequately satisfied). This fact gives us a sensible measure 

of the weight of evidence that the underlying effect is real. 

And the probability scale used by the p-value helps us to con-
trol the rate of false-positive errors in scientific research. 

So the fact that the p-value depends on the stopping rule 

is sensible (to enable us to control the false-positive error 

rate). And from the practical perspective of scientific re-

search, the statistical likelihood principle (that all the relevant 

information about a parameter or effect is in the likelihood 

function) is correct, but a given data table can have essentially 

different likelihood functions for a given parameter, with the 

correct likelihood function depending on the stopping rule. 

Mayo (2014) and her discussants give a penetrating tech-

nical discussion of the preceding and related ideas. 

Which stopping rule should we use in scientific research? 
In general, we should use the rule that satisfies the constraints 

of the research project and that leads to the most powerful key 

statistical tests, where the power of statistical tests is dis-

cussed in section 4 of the body of this paper.  

These ideas also apply to post hoc comparisons and mul-

tiple testing. For example, Dienes (2011) suggests that the 

Bayesian approach enables researchers to (a) ignore stopping 

rules, and (b) perform multiple post hoc comparisons or other 

forms of multiple testing without taking any frequentist con-

sideration of the multiple testing. However, if we wish to con-

trol the rate of false-positive errors, then it is easy to show 

analytically that for sensible rigor we must take account of the 
stopping rule in the analysis, and we must make certain ad-

justments if we perform post hoc comparisons or if we per-

form other forms of multiple testing. 

In summary, it is sensible to retain control of the false-

positive error rate in scientific research because false-positive 

errors are costly. If it is used properly, the p-value helps re-

searchers to control the false-positive error rate. Therefore, 

the p-value is sensible. 

Criticizing the p-value from another direction, some stat-

isticians point to the fact that the p-values from different re-

search projects that address the same research question some-
times disagree with each other (Greenland, 2017, p. 640). 

That is, we might perform two research projects to study the 

same research question and one research project might yield 

a p-value of, say, 0.02, but the other research project might 

yield a p-value of, say, 0.08. So, if we are using a critical p-

value of 0.05, then which of the two research projects should 

we believe? This situation suggests to some statisticians that 

using p-values is irrational.  

However, another sensible way to view this situation is to 

conclude that the research results under consideration are 

equivocal. That is, the contradictory results may mean that the 

effect under study isn’t real in the population, and the positive 
result in one of the two cases is merely a false-positive error. 

Or the results may mean that the effect is real in the popula-

tion, but the effect is weak, and the negative result is a false-

negative error. So, in such cases, if the effect under study is 

important enough, then an interested researcher should con-

sider performing more powerful research to see if he or she 

can obtain better evidence that the effect is real.  

So the example doesn’t imply that using p-values is irra-

tional. However, the example clearly illustrates how the use 

of the p-value (and each of the other measures for detecting 

relationships) sometimes leads to false-positive and false-
negative errors. 

Demidenko (2016) criticizes the p-value by correctly not-

ing that we can (at least in theory) make any p-value in scien-

tific research arbitrarily low by merely increasing the sample 

size. (This conclusion is based on the widely believed but un-

provable premise that the null hypothesis is never exactly true 

in scientific research, as discussed above in appendix B.12.) 
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This point leads Demidenko to suggest that p-values aren’t 

useful. 

However, Demidenko’s point, though possibly theoreti-

cally correct, doesn’t reflect a practical issue. This is because 

researchers generally can’t afford the enormous sample sizes 
that would be required in some cases to obtain arbitrarily low 

p-values. So, disappointingly, in scientific research we often 

obtain high p-values—p-values that are greater than 0.05. 

If a properly computed p-value is less than (or equal to) 

the critical p-value, and in the absence of a reasonable alter-

native explanation, this enables us to tentatively conclude that 

data based on an affordable sample provide enough evidence 

that the observed effect is real in the underlying population. 

Without that (and without an equivalent procedure), in some 

cases we may deceive ourselves. Thus, contrary to 

Demidenko’s point, p-values are useful because they help us 

to reliably determine (in the absence of a reasonable alterna-
tive explanation) if we have enough evidence that an effect is 

real (i.e., reproducible in the population). 

Appendix D: Comparing Hypothesis Testing with 
Karl Popper’s Idea of Falsification 

Karl Popper suggested that a theory isn’t a valid scientific the-

ory unless it can be falsified (1980, 1989, 1992). He used this 

sensible principle to support the ideas that Freudian theory, 

Marxist theory, and astrology aren’t scientific theories. That 

is, none of the three theories can be readily falsified. That is, 

careful thinkers have been unable to find aspects of these the-

ories that can be readily tested with some form of objective 
test, with the possibility of falsifying the theory through the 

test. In contrast, any accepted scientific theory (e.g., the the-

ory of relativity) can in theory easily be empirically falsified 

if certain research findings (pertaining to relationships be-

tween variables) are or were obtained. 

The ideas about relationships between variables discussed 

in the present paper are consistent with Popper’s falsification 

approach. That is, all theories (research hypotheses) about re-

lationships between variables could be falsified by showing 

that the relationship of interest doesn’t exist or by showing 

that the relationship exists, but goes in the “opposite direc-

tion” to what the theory predicts. That is, the theory might 
predict that there is an increasing relationship between two 

variables. In this case as one variable increases, the other var-

iable also tends to increase. But empirical research might re-

veal that the relationship is a decreasing relationship—as one 

variable increases, the other variable tends to decrease. 

However, the two forms of falsification discussed in the 

preceding paragraph occur only rarely in the study of relation-

ships between variables. This is because (a) it is generally 

agreed that it is impossible to prove that a relationship be-

tween compatible variables doesn’t exist, and (b) although ef-

fects that are opposite to what we expect occur occasionally, 
they are rare. And if we fail to find evidence that a research 

hypothesis is supported, then we almost always find that there 

is no good evidence of a relationship between the variables 

under study (as opposed to finding good evidence of no rela-

tionship or the opposite relationship). (The rareness of discov-

ery of opposite relationships may arise because researchers 

generally think carefully about the relationships they study, 

which makes it less likely that they will find the opposite.) 

The fact that clear falsifications of research hypotheses 

rarely happen might seem to suggest that Popper’s falsifiabil-

ity criterion is merely a theoretical criterion that isn’t often 
used in practical scientific research. However, if we turn 

things around and focus on falsifying the null hypothesis, then 

this type of falsification happens often and is what many sci-

entific researchers are trying to do. We wish to falsify the null 

hypothesis to support the idea that our research hypothesis is 

true. 

If (and, arguably, only if) we can convincingly falsify or 

reject the null hypothesis, then we can tentatively conclude 

that a relationship between variables (or other effect) exists in 

the population and therefore the theory associated with the re-

search hypothesis is supported. 

Thus Popper’s theory of falsification and the notion of sta-
tistical hypothesis testing discussed in this paper are con-

sistent if we assume that the falsification is performed of the 

null hypothesis, as opposed to falsification of the research hy-

pothesis. This is somewhat different from Popper’s approach 

because he doesn’t discuss falsifying a null hypothesis. But 

the two approaches are consistent. Arguably, science pro-

ceeds by carefully falsifying various null hypotheses, thereby 

providing (in the absence of a reasonable alternative explana-

tion) good evidence that the associated research hypotheses 

are true. 

Appendix E: The Optimal Critical Value for a Test 
Statistic 

McShane, Gal, Gelman, Robert, and Tackett suggest that the 

critical p-value of 0.05 is “entirely arbitrary” (2018, p. 6). 

Therefore, they conclude that the use of the p-value is illogi-

cal. However, the p-value isn’t illogical because there is al-

ways a theoretical optimal critical p-value. Similarly, there is 

a theoretical optimal critical value for the confidence interval, 

for the Bayes factor, and for the other measures of the weight 

of evidence that an effect is real. (The presumed optimal crit-

ical value is “built in” to the information criteria.) 

As suggested in section 3 in the body, the optimal critical 

value for a measure of the weight of evidence that an effect is 
real in a given field of science is the critical value that, if used 

consistently across the field, maximizes the total social, theo-

retical, or commercial long-term benefits or payoff of all re-

search performed in the field given the available research re-

sources. This criterion for the optimal critical value is sensible 

because, arguably, no other requirement for scientific re-

search is more important than maximizing the long-term ben-

efits of the research across a field of science. 

If we use the preceding view, then the optimal critical 

value for a test statistic will be different in different fields of 

science because different fields have differing values of the 
relevant attributes that determine the maximal benefits. These 

attributes include (a) the rate of study (in good but incorrect 

faith) of false research hypotheses in the field, (b) the average 

payoff of positive results in the field when such results are 
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obtained, (c) the average costs of false-positive and false-neg-

ative errors in the field, and (d) various other attributes, such 

as research costs in the field. 

Unfortunately, although the preceding ideas are sensible, 

it appears that we can’t reasonably measure the attributes (a), 
(b), (c), or (d) in any field of science in a practical sense. 

Therefore, it is apparently impossible to use cost-benefit prin-

ciples to directly determine the optimal critical value for a test 

statistic in a field of science. However, it is useful to be aware 

of these ideas because they provide a sensible conceptual def-

inition of the optimal critical value for a test statistic. 

The fact that we can’t know the optimal critical value for 

a test statistic in a field of science has led to the choice of 

general critical values based on consensus among experi-

enced researchers. These general critical values seem reason-

able in the sense that they give us a reasonable balance of (a) 

positive results, (b) false-positive errors, (c) negative results, 
(d) false-negative errors, and (e) research costs. And these 

critical values give researchers a level playing field—a con-

sistent criterion that we can use in all standard scientific re-

search to determine whether research results are (in the ab-

sence of a reasonable alternative explanation) believable.  

Also, by giving us a scale, the critical-value approach en-

ables researchers who think that the conventional critical 

value is unreasonable to choose their own critical value. For 

example, if a researcher thinks that the critical p-value of 0.05 

is too lenient (i.e., allows too many false-positive errors to oc-

cur), then they can opt to use a critical p-value value of, say, 
0.01 in their research or in their interpretation of other re-

searchers’ research. 

Researchers prefer low false-negative error rates (i.e., they 

prefer critical values that aren’t strict) because this makes it 

easier and less costly for their research to obtain statistical 

significance and thereby (if everything else is satisfactory) be 

published. But journal editors prefer low false-positive error 

rates (i.e., they prefer critical values that are strict) because 

this reduces the rate of publication of misleading false-posi-

tive errors in the research literature.  

Journal editors are the final arbiters of the critical value 

for a test statistic in the sense that a key hurdle for any stand-
ard scientific research project is to have a report of the results 

accepted for consideration for publication in a journal. This 

is the first step toward being accepted for publication in the 

journal. As discussed in section 3 in the body, most journals 

that are statistically oriented will indicate that a paper will 

only be considered for publication in the journal if the value 

of the relevant measure of the weight of evidence falls beyond 

(or is equal to) the journal’s critical value. This standard saves 

time by eliminating quibbling about whether a research result 

is convincing enough to deserve attention. 

Some statisticians recommend lower conventional critical 
p-values (Johnson, 2013; Bayarri, Benjamin, Berger, and 

Sellke 2016; Johnson, Payne, Wang, Asher, and Mandal 

2017). This recommendation is based on the perception that 

“too many” false-positive results are being published in the 

scientific research literature. 

Benjamin, Berger, …, and Johnson (72 authors, 2017) rec-

ommend that a critical p-value of 0.005 be used for “claims 

of new discoveries”. However, interestingly, these authors 

distinguish their recommended critical value from the critical 

p-value that is used as a screening rule for publication. And in 

their “Concluding remarks” section they “emphasize” that 

journals can continue to use a critical p-value of 0.05 (or 

lower, at each journal’s discretion) as a screening rule to de-
termine whether the results in a paper provide enough weight 

of evidence to consider the paper for publication. This screen-

ing role is, arguably, the key role of the p-value in scientific 

research—to decide whether the evidence of an effect is good 

enough to warrant consideration for publication in a scientific 

journal. 

It is noteworthy that researchers generally don’t use criti-

cal values to decide whether a “new discovery” has been 

made. This is because, as noted in section 4 in the body, p-

values can’t make decisions because false-positive errors can 

always occur. Instead, the research community decides 

whether a “new discovery” has been made based on many fac-
tors, of which a low p-value is often an important considera-

tion. 

Lakens et al. (88 authors, 2018) rebut the Benjamin, Ber-

ger, …, and Johnson (2017) article. 

It may be true that “too many” false-positive results are 

being published in the research literature. If so, then it is man-

datory to use stricter critical values in statistical hypothesis 

tests. This will lead to fewer false-positive results in the liter-

ature (though it will also increase the cost of scientific re-

search if we wish to maintain equivalent statistical power in 

hypothesis tests).  
Unfortunately, it is difficult or impossible to determine 

objectively whether “too many” false-positive results are be-

ing published in the research literature. This is because, as 

noted at the beginning of this appendix, it is difficult or im-

possible to evaluate “too many” objectively. 

It seems likely that (due to a form of natural selection by 

the crowd) the standard critical p-values of 0.05 and 0.01 are 

near-optimal for most scientific research in the sense that they 

lead to the greatest overall scientific payoff—a good propor-

tion of published true positive results together with an ac-

ceptable mix of (published) false-positive errors and (un-

published) false-negative errors. Of course, the important er-
rors will be discovered and corrected in later research. 

Appendix F: Teaching p-Value Concepts to 
Beginners 

It is (arguably) necessary to understand p-values to fully un-

derstand the principles of scientific research. But, as noted, p-

values are somewhat hard to understand. Fortunately, a proper 

understanding of p-values is guaranteed if a student studies 

enough realistic examples of scientific research projects that 

study relationships between variables when the null hypothe-

sis is and isn’t rejected. The concept of “enough examples” 

depends on (a) the student’s initial level of understanding, (b) 
the student’s ability, and (c) the quality of the examples.  

It is also important for students to study examples of rea-

sonable alternative explanations and examples of false-posi-

tive and false-negative errors. There must be enough exam-

ples to ensure that students will never make the common and 
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tempting error of assuming that p-values make decisions. Ex-

amples work best if they are practical in the sense that there 

is an easily recognized meaningful social, theoretical, or com-

mercial payoff if the studied relationship between variables is 

found to be real. 
Students must be aware that a certain (unknown, but hope-

fully low) proportion of the positive results in the scientific 

literature are false-positive errors. 

Students must learn the fundamental distinction in scien-

tific research between an observational research project (in 

which the predictor variables are merely observed in the enti-

ties in the sample) and an experiment (in which one or more 

of the predictor variables are manipulated in the entities). In 

general, we must perform an experiment if we wish to deter-

mine whether a causal relationship exists between variables, 

though there are occasional exceptions. 

It is important to distinguish between (a) using a p-value 
to detect a relationship between variables and (b) studying a 

newly detected relationship between variables through devel-

oping a model equation and with graphs. Detecting relation-

ships between variables comes first, and we can use p-values 

to help with this detection. However, beginning students 

needn’t understand the mathematical details of how p-values 

are computed because these details aren’t necessary to under-

stand the function of the p-value in helping us to detect rela-

tionships between variables. 

Similarly, beginning students needn’t understand the de-

tails of how to derive a model equation from a data table be-
cause that is arguably too complicated for most introductory 

courses. Instead, students should understand that straightfor-

ward methods are available to derive equations, as described 

in statistics textbooks.  

But students should know what the various forms of de-

rived model equations look like (with the parameter values 

expressed as numbers, not as abstruse algebraic symbols). 

And students should understand that if you substitute the 

value(s) of the predictor variable(s) for a new entity from the 

studied population into a properly derived model equation, 

and if you then evaluate the resulting expression, then you get 

a sensible predicted value of the response variable for the en-
tity.  

A good graph is a key to proper understanding of a rela-

tionship between variables because a good graph shows the 

relationship at a glance. So students must learn how to under-

stand graphs. By convention, the response variable is always 

plotted on the vertical axis of a graph because this makes it 

easier for the viewer to orient to the graph. Beginners often 

inadvertently omit axis labels from graphs, which substan-

tially reduces the ability of a graph to communicate. 

For the main examples in a statistics course, it is helpful 

to begin by explaining the goal of the research to the students. 
The goal must be explained in terms that enable students to 

appreciate the usefulness of the study of the relationship. 

Then the teacher can present students with well-formatted 

computer output showing an organized complete analysis of 

a relevant data table. The first part of the output should show 

the first five or so rows of the properly rounded raw data. The 

columns of the data should be clearly labelled (with carefully 

chosen variable labels, typically multiple words, perhaps in-

cluding the units of measurement) to assist understanding. 

These illustrative data rows, together with the count of the 

number of rows in the full table, enable students to understand 

the nature of the data being analyzed. 
Next the output can show the results of the analysis of the 

data, showing descriptive statistics, test statistics, p-values, 

and possibly other measures of the weight of evidence that an 

effect is real. The output should include carefully chosen 

graphs to illustrate any relationships between variables that 

are (apparently) discovered. The teacher can explain to the 

students what each item in the output tells us, explaining that 

the software includes many items for thoroughness, but some 

items are less important than others.  

After students have learned the basic ideas about the study 

of relationships between variables in scientific research, it is 

recommended that they be assigned to groups and then each 
group be asked to design a research project in their area of 

interest. (The students won’t be asked to perform the research 

project because that would be too complicated and too time-

consuming for beginning students.) They should first choose 

a response variable they would like to learn to predict or con-

trol. The teacher should encourage the students to use contin-

uous response variables if possible because these variables 

contain more information in their values than discrete re-

sponse variables. And analysis procedures for continuous re-

sponse variables are generally better known than analysis pro-

cedures for discrete response variables.  
Next, the students can choose one or more predictor vari-

ables that the response variable might be related to. (Predictor 

variables may be continuous or discrete.) Then the students 

can decide whether they must merely observe the predictor 

variable(s) in an observational research project or whether 

they can manipulate some or all of the predictor variable(s) in 

an experiment.  

Next, the students can design an observational research 

project or an experiment to study the relationship of interest. 

The students can specify how the entities in the sample will 

be selected from the population and how the response and pre-

dictor variables will be measured in the entities. (Some pre-
dictor variables may not be measured directly in the entities, 

but are measured in the entities’ environment.) Students can 

specify the detailed steps to perform the research project, dis-

cussing the expected outcome, and discussing possible alter-

native explanations for any results they might obtain. Students 

can present their research designs to the class. Then the 

teacher and the other students can constructively criticize the 

designs, helping students to see how scientific logic works. 

Next, the teacher can retire to his or her office and use a 

computer to generate (cook up) some data for each group. 

Generating data (with random number generators) is rela-
tively easy with modern statistical software, especially if you 

clone one of the many example programs for generating data 

on the web. Search for “generate data with [the name of your 

statistical software]”. 

The teacher should generate the data so that it yields a 

plausible “nice” set of results. Perhaps typically the results 

should show modestly (not highly) statistically significant ev-

idence that the central effect under study is real. This implies 
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that the teacher must adjust the data-generation procedure un-

til it gives nice analysis results. This is easy to do by modify-

ing the model equation in the data generation program. You 

first set the values of the parameters of the data-generation 

equation to sensible (null or non-null) values. Then you adjust 
the overall standard error of the equation to give a sensible 

main p-value that is slightly less than 0.05. Of course, the 

smaller the standard error, the smaller the p-value. This may 

require 20 or 30 or more different generations of the data to 

get everything right, but that goes quickly after you have done 

it a few times. Use a fixed “seed” for the random number gen-

erator(s) to give reproducible results. 

After cooking up appropriate data, the teacher can perform 

a formal full analysis of the data to look for evidence of the 

sought-after relationship(s) between the variables. The 

teacher should use careful variable and value labelling in the 

output with appropriate references to the students’ own termi-
nology, which will help the students to relate to the analysis. 

After completing the analysis, the teacher can present the 

computer output from the analysis to the students, as if the 

students had obtained the data through performing the re-

search. Then the teacher and students can discuss the interpre-

tation of the computer output.  

After considering the computer output, each group of stu-

dents can write a report summarizing the conduct of the re-

search and summarizing the results. Students must understand 

that the report must explain all the “relevant” details about 

how the research was done because this makes it easier for 
other researchers to successfully replicate the results, which 

is in everyone’s interest. Many less experienced researchers 

omit relevant information from their research reports, thereby 

leading to difficulties in replicating the results by other re-

searchers, which leads the other researchers to wonder if the 

results reflect a false-positive error. 

A challenge in the preceding approach is that if the stu-

dents have free range in designing their research projects, then 

the teacher may find a surprising array of statistical analysis 

challenges. And not every teacher is academically equipped 

to handle all these challenges (because there is a broad set of 

methods for data analysis). However, this problem can be 
avoided if the teacher ensures that the students design their 

research projects in ways that he or she can comfortably ana-

lyze. 

It is recommended that most courses for beginners not in-

clude any data-analysis computer programming. Of course, 

the programming is conceptually simple—we give the data 

and some simple instructions to the computer, and the com-

puter analyzes the data and generates the relevant output. 

What could be easier than that? 

However, from a practical point of view, programming for 

data analysis is surprisingly complicated. This is because 
there are many minor but necessary details in software instal-

lation, syntax, options, and data management, all of which 

must be correctly handled before a program will work 

properly. Thus in a course for beginners that includes com-

puter programming, the multitude of programming details 

tend to become the center of attention as students strive to 

master them. But understanding the scientific research ideas 

and understanding the computer output is much more im-

portant than understanding the programming details, which 

are important, but aren’t central, and which can come in later 

courses for students who wish to learn more about scientific 

research.  
Appendix O below discusses an approach to understand-

ing the reality of the ideas discussed in this paper, which may 

be of interest to beginners or others who are curious about the 

philosophy behind the ideas. 

Appendix G: A Case When We Don’t Need a Meas-
ure of the Weight of Evidence 

The earlier discussion suggests that we generally need a meas-

ure of the weight of evidence that an effect discovered in sci-

entific research is real in the population of entities of interest. 

This helps us to avoid deceiving ourselves. This appendix dis-

cusses an instructive important exception to that point. 

For this discussion it is useful to split the study of relation-
ships between variables into two cases—the case in which the 

response variable is a continuous variable and the case in 

which the response variable is a discrete variable. A variable 

is a “continuous” variable if it can (at least in theory) have any 

value within some continuous range of values (where the 

range is usually a numeric range, though it needn’t be). A 

large percentage of scientific research projects that study re-

lationships between variables have a continuous response var-

iable.  

If a variable isn’t a continuous variable, then it is a “dis-

crete” variable, having a (usually finite) set of discrete possi-
ble values. Some discrete variables have only two possible 

values, such as “yes” and “no”, or “true” and “false”, or “one” 

and “zero”. Many other discrete variables have between three 

and ten or so possible values. But we will see in a moment 

that some discrete variables can have a very large number of 

possible values. 

If the response variable in a scientific research project is a 

continuous variable, and if the model equation is a sum of 

terms (as is typical with continuous response variables), then 

an elementary statistical theorem shows that the variance of 

the sum of the terms in the equation is equal to the sum of the 

variances of the individual terms (plus double the sum of the 
unique covariances, if relevant). Therefore, adding terms for 

unnecessary predictor variables to an additive prediction 

equation always tends to increase the variance and therefore 

increases the standard error of the predicted values of the re-

sponse variable. This increase in variance amounts to a de-

crease in the precision of the predictions made by the model 

equation.  

(The increase in variance from adding a term will often be 

small and may be nullified or reversed if a real relationship 

between the added predictor variable[s] and the response var-

iable exists. Negative covariances are generally too small to 
cancel out the extra variance from adding a term.) 

Also, in the case of a continuous response variable, if we 

add unnecessary terms to a model equation, then the uncer-

tainty of the parameter estimates for terms already in the equa-

tion is almost always increased, as proven in the case of linear 

regression analysis by Sen and Srivastava (1990, sec. 11.2.3). 
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This increase in uncertainty of parameter estimates is argua-

bly undesirable, though it is also possible to argue that the un-

certainty of the parameter estimates is less important, and it is 

the uncertainty in the predictions that is relevant. 

Also, adding unnecessary predictor variables to a model 
equation violates the principle of parsimony. Also, adding un-

necessary predictor variables to a model equation implies that 

we must measure the unnecessary variables whenever we 

wish to use the equation, and this measurement of unneces-

sary variables adds an unnecessary extra cost. 

Therefore, adding unnecessary terms to a model equation 

with a continuous response variable is undesirable. Thus we 

wish to avoid including a predictor variable in a model equa-

tion with a continuous response variable unless we have good 

evidence that this variable is related to the response variable. 

Thus if the response variable is continuous, we need a meas-

ure of the weight of evidence that a term belongs in the equa-
tion to help us to determine whether we should include or ex-

clude each available term for the equation. 

(We can bypass the direct need for a measure of weight of 

evidence with a continuous response variable if we use an au-

tomatic procedure for selecting relevant predictor variables. 

However, in this case we are still using a measure of the 

weight of evidence of an effect, but a measure is built into the 

automatic procedure we are using, so the measure is present, 

but less visible.) 

Consider now the case when the response variable is a dis-

crete variable. If a discrete response variable has a small num-
ber of possible values, then the arguments above for omitting 

unnecessary terms generally still apply, and including unnec-

essary predictor variables in an equation will unnecessarily 

increase cost and complexity. But if a discrete response vari-

able has many possible values (e.g., more than 100 or so val-

ues), then things change. 

Consider the problem of computer pattern recognition, 

which is an important extreme case. This problem is easily 

viewed as the study of a relationship between variables in 

which the predictor variables are variables that describe an 

observed state of nature as recorded in a data table, and the 

response variable is some form of a proper “description” of 
the pattern observed in data, which is also recorded in the data 

table when we are first deriving the model equation. For ex-

ample, in handwriting recognition, the values of the predictor 

variables are values that describe an image of handwriting, 

and the value of the response variable is a character string that 

is a digital representation of the text in the handwriting. Hand-

writing recognition software uses an internal representation of 

the relationship between the variables to predict the digital 

character string from a handwriting image. 

Similarly, in general visual image recognition, the predic-

tor variables are a set of variables describing an image (typi-
cally, the color and intensity of each pixel in the image) and 

the response variable is a plain-language description of the 

image, such as “a woman throwing a Frisbee in a park” 

(LeCun, Bengio, and Hinton, 2015). Similarly, in speech 

recognition the predictor variables are a set of variables de-

scribing the time-varying pitch and intensity of the sounds of 

spoken words that are received by the system’s microphone, 

and the response variable is a character string of the text for 

the words that the system “heard”. 

Pattern recognition problems often aren’t viewed as stud-

ying relationships between variables. But these problems can 

be readily viewed as studying relationships by viewing the in-
puts to such systems as the (rather complicated) values of pre-

dictor variables and by viewing the output as the value of a 

discrete response variable (with many possible values). Argu-

ably, viewing pattern-recognition as a type of study of rela-

tionships between variables helps to increase understanding. 

Modern pattern-recognition software systems are surpris-

ingly practical in the sense that some such systems are now 

more efficient for many users than traditional systems. For 

example, many users accept and use speech-recognition sys-

tems for text entry and for command entry in electronic de-

vices and computers. Users have found that using speech-

recognition software to enter text and commands is signifi-
cantly more convenient than typing the information on a key-

board, even for fast typists with good keyboards. 

As noted, in the case of continuous response variables, we 

usually derive a model equation in which we omit irrelevant 

predictor variables. But if we examine modern pattern-recog-

nition software (e.g., neural network software) in which a 

model equation for the relationship between the variables is 

developed by the software, the software typically makes no 

direct attempt to identify and omit “irrelevant” predictor var-

iables from the broad set of predictor variables it is allowed 

to use. This is because a predictor variable that is irrelevant in 
one situation may be highly relevant in another. 

Generally, we never see the internal model equation in 

pattern-recognition software. This is because the equation is 

developed inside the computer by the software and is typically 

a highly complicated and difficult-to-interpret network of 

equations that have been “naturally” selected through “train-

ing” of the software with many earlier instances (samples) of 

the various types of patterns under study. Thus the precise na-

ture of the relationship between the variables is obscure. 

However, if we study the low-level details of the software, we 

see that the response variable is mathematically connected to 

the predictor variables by a large complicated network of 
mathematical relationships (equations) that the software has 

derived.  

The relationships between variables in pattern-recognition 

software may mathematically emulate the complicated elec-

trochemical relationships (networks) that occur at a low level 

between the neurons of a biological living brain.  

Thus, at a high level, pattern-recognition software works 

in the sense that it merely observes certain regularities in the 

data it was trained with and it uses these regularities to de-

velop in a complicated internal model equation or rule to pre-

dict the values of the response variable in new entities from 
the population of entities (e.g., images or utterances) that it is 

designed to interpret. 

For the present discussion, the main conclusion is that we 

can view pattern-recognition systems as studying relation-

ships between (a) a set of predictor variables and (b) a discrete 

response variable with many possible values. And pattern-

recognition systems generally take account of all the available 

predictor variables, making no attempt to determine whether 
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certain of them are irrelevant in predicting the values of the 

response variable. Thus pattern-recognition systems generally 

don’t use or need a measure of the weight of evidence that a 

relationship exists between variables.  

In view of the preceding points, methods for determining 
the weight of evidence of the existence of relationships be-

tween (a) one or more predictor variables and (b) a response 

variable are clearly often useful, especially with continuous 

response variables. But such methods are unnecessary in 

some cases, such as the case with a discrete response variable 

when this variable has many possible values, as in pattern-

recognition problems. 

Appendix H: Some Theoretical Arguments About 
the Preferred Measure 

Section 5 in the body of this paper discusses nine sensible 

measures of the weight of evidence in support of a research 

hypothesis—in support of the hypothesis that an effect ob-
served in scientific research is real in the underlying popula-

tion. The discussion concludes that the p-value is slightly su-

perior to the other measures in various senses, as summarized 

in table 1 in the body. 

However, despite the advantages of the p-value, we can 

still ask whether one of the measures might in some sense be 

theoretically more or less correct than the others. That is, does 

one of the measures gives us the “true” (or a false) measure 

of the weight of evidence in favor of the research hypothesis? 

This appendix evaluates four arguments why one of the 

measures might be theoretically superior or inferior to the oth-
ers. 

First, it could be argued that the measure of weight of ev-

idence that is most nearly linearly related to a standard meas-

ure of the effect size in the region of the critical value is the 

true measure. But there are generally various available 

measures of the effect size in a given research situation, and 

these measures generally aren’t linearly related to each other 

as the effect size changes. Therefore, we would need to 

choose one of the measures of effect size and say that it is the 

“true” measure of effect size before we could use the linearity 

argument to choose the best measure of the weight of evi-

dence that an effect is real. But choosing one of the measures 
of effect size as the “true” measure seems somewhat arbitrary. 

So, if we seek objectivity, this first argument is ruled out. 

Consider a second argument why one of the measures of 

the weight of evidence that an effect is real is superior to the 

others: It could be argued that one of the measures is more 

“natural” than the others. In fact, many statisticians have 

strong opinions about which of the measures of the weight of 

evidence is most “natural”, though opinions vary.  

The idea of appealing to the “naturalness” of the measure 

of the weight of evidence is sensible if we have a reliable 

measure of “naturalness”. Unfortunately, we don’t appear to 
have such a measure, so we must fall back on intuitions. But 

intuitions are unreliable. So, again, if we seek objectivity, it 

seems difficult to appeal to the concept of “naturalness” in 

choosing the best measure of the weight of evidence that an 

effect is real. 

Consider a third argument why one of the measures of the 

weight of evidence that an effect is real is superior to the oth-

ers: Suppose that we choose a measure of the weight of evi-

dence that an effect is real. For example, let us choose the 

Bayes factor. And suppose we choose a sensible critical value 
for the measure, say, 16.  

Suppose that we calibrate all the other measures to have 

critical values that correspond to a Bayes factor of 16 in a 

specified research situation. That is, when the Bayes factor 

(by being greater than or equal to 16) declares that an effect 

is statistically significant in this situation, then we give all the 

other measures critical values so that they will also declare 

that the effect is statistically significant.  

Next, suppose that we go to another research situation 

(e.g., the same research situation but with a different sample 

size). Then, if we use the same calibrated critical values, we 

will find that some of the other measures will in some border-
line cases disagree with the Bayes factor about whether there 

is enough evidence to reject the null hypothesis. 

This phenomenon is illustrated in the case of the p-value 

and Bayesian approaches in three journal articles. First, Kass 

and Raftery (1995, sec. 8.2) show that for a given Bayes fac-

tor, we would under the standard p-value approach need to 

use a different critical p-value to reach the same conclusion, 

depending on the sample size. 

Similarly, Wagenmakers (2007, pp. 792–794) discusses 

the relationship between the sample size and the posterior 

probability that the null hypothesis is true. His figure 6 shows 
that for a research result that just obtains statistical signifi-

cance (i.e., the p-value is exactly equal to 0.05), the posterior 

“probability” that the null hypothesis is true depends on the 

sample size. 

Held and Ott (2016) illustrate the phenomenon using min-

imum Bayes factors. They illustrate that the same p-value cor-

responds to a different minimum Bayes factors depending on 

the sample size.  

The preceding three examples show how there are incon-

sistencies between (a) the p-value and (b) either the Bayes 

factor or the posterior “probability” that the null hypothesis is 

true. Thus if we assume that the Bayes factor provides a “cor-
rect” measure of the weight of evidence, then corresponding 

critical p-values will vary with the sample size. Therefore, p-

values are inconsistent with the “correct” measure, and thus 

the p-value is an “incorrect” measure of the weight of evi-

dence. 

But, we can readily reverse things. And if we assume that 

the p-value is the “correct” measure of weight of evidence, 

then the Bayesian methods for computing the weight of evi-

dence are inconsistent with the p-value, and thus the Bayesian 

methods are “incorrect”. 

Thus there are (smooth) inconsistencies between some of 
the measures of the weight of evidence pertaining to critical 

values if we move from one research situation to another 

(such as by changing the sample size). This is because the 

(monotonic) relationships between some of the measures of 

weight of evidence aren’t linear (as illustrated by Spiegelhal-

ter, Abrams, and Myles, 2004, p. 132) and due to the Jeffreys-

Lindley paradox (which is discussed in appendix A). Thus in 

a new research situation one measure may cross the critical-
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value boundary ahead of another as the sample size (or some 

other relevant attribute of the research situation) changes.  

The inconsistencies between the Bayesian methods and 

the p-value are often scientifically inconsequential. But they 

raise puzzling scientific questions with larger samples due to 
the Jeffreys-Lindley paradox. Efron and Hastie give an in-

structive example of the inconsistencies in varying sample 

sizes between a function of the p-value and a form of the 

Bayes factor (2016, table 13.5). In examples like this, even if 

an effect is small, if it is real, then researchers invariably want 

to know about it. Of course, a small real effect may not be 

directly useful. But we still want to know about it because it 

might lead us to a way to make it useful. 

The key point in this discussion of the third argument is 

that the existence of the inconsistencies doesn’t somehow im-

ply that one of the methods is the true method and therefore 

the other methods are inferior (because they are slightly in-
consistent with the “true” method).  

Consider a fourth argument why one of the measures of 

the weight of evidence that an effect is real is superior to the 

others: Some researchers say that the Bayes factor is preferred 

to the p-value because the conventional critical value for the 

Bayes factor is stricter than the conventional critical values 

for the p-value (Ioannidis 2008; Wetzels et al. 2011; Bayarri, 

Benjamin, Berger, and Sellke 2016). They recommend using 

the Bayes factor because the stricter conventional critical 

value for Bayes factors make it less likely that the Bayesian 

approach will make false-positive errors. (But, as discussed in 
section 5.5 in the body of this paper, the stricter critical value 

makes it more likely that the Bayesian approach will make 

false-negative errors.) Therefore, in view of the “replication 

crisis” in scientific research, these researchers suggest that we 

should use the Bayes factor because (if we use it with a con-

ventional critical value) it will lead us to make fewer false-

positive errors. 

However, if a researcher or an editor wishes to reduce the 

rate of false-positive errors in research, then he or she needn’t 

switch to using Bayes factors. Instead, they can simply use a 

stricter critical value for the measure of weight of evidence 

that they are already using. For example, if a researcher or 
editor is using the p-value as a measure of the weight of evi-

dence, and if they are using a critical p-value of 0.01, and if 

they wish to use a stricter test, then they can switch to using a 

lower critical p-value, such as 0.005 or 0.001. (But, unfortu-

nately, this will necessarily increase the rate of false-negative 

errors or it will necessarily increase research costs, exactly as 

switching to the Bayes factor with conventional critical values 

would do.) 

Appendix E above discusses the idea of the optimal criti-

cal value for a test statistic. 

In summary, this appendix has discussed four theoretical 
arguments why one of the measures of the weight of evidence 

might be superior or inferior to the others. But in each case, a 

sensible rebuttal is proposed. 

Appendix I: Should We Allow the True Values of 
Parameters of Model Equations to Vary? 

Recall the general regression model equation discussed above 

in appendix B.4: 

 𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑞𝑥𝑞 +  𝜀 (1) 

The 𝑥’s in the equation are the 𝑞 predictor variables and the 

𝑏’s are the 𝑞 + 1 parameters. Virtually all model equations 

have zero or (usually) more predictor variables and one or 

more parameters. 

As noted in appendix B.5, we usually view the true values 

of parameters of model equations as being fixed (i.e., con-

stant) numbers in the population. (Of course, the estimates of 
the values in a given equation generally vary slightly from one 

research project to the next.) The idea that parameters have 

fixed values in the population is especially evident in the 

physical sciences, as discussed below in appendix J.  

However, it is also possible and sometimes sensible to 

view the true values of parameters or effects of a model equa-

tion as themselves varying “slowly” over time. But in that 

case, we generally view the parameters as being fixed within 

the time frame of reference under study. 

In contrast, some statisticians suggest that we should al-

low the true values of the parameters of a model equation to 
vary instead of assuming that they have constant fixed values. 

For example, Gelman recommends that we move “beyond the 

worldview in which effects are constant …” (2015, p. 633). 

Although Gelman uses the word “effects”, it appears that he 

means what the present paper refers to as “parameters”. (The 

values of the parameters define the effects.) This suggests that 

a modern approach to data analysis would allow the true val-

ues of the parameters of a model equation of a relationship 

between variables to vary from one research project to the 

next. 

Although the approach with varying true parameter values 

is more complicated, the idea seems sensible in a given situa-
tion if we can show that the approach is useful. For example, 

if we can show that if we allow parameter values to vary, then 

this enables model equations to make better predictions than 

if we use fixed parameter values, then clearly the approach 

would be sensible. 

However, if we allow the true values of the parameters of 

a model equation to vary, then we can model the variation in 

the values of a parameter with a “second-level” model equa-

tion. That is, any parameter with varying values can be the 

response variable in a second-level equation. And whatever 

causes or is related to the variation in this new response vari-
able can be the predictor variable(s) in the second-level equa-

tion. And this second-level equation will itself almost cer-

tainly have parameters with fixed true values.  

(If the second-level model equation also has parameters 

with varying values, then we can use a third-level model equa-

tion with fixed parameters to model the variation in the values 

of the parameters of the second-level equation, and so on. 

And, presumably, though not necessarily, we would encoun-

ter fixed parameter values at some point in the sequence of 

model equations.) 

However, if we have a second-level model equation that 

models the variation in the values of a parameter, then we can 
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substitute the right-hand side of the second-level (or the right-

hand side of a yet higher-level) model equation into the orig-

inal model equation in place of the associated parameter. (In 

this substitution operation we omit the error term associated 

with the second-level equation, leaving the prediction errors 
in the first-level model equation to be modelled by the error 

term in that equation.) This will generate a new version of the 

original equation, except that all the parameters in the new 

equation associated with the term with the varying parameter 

will now have fixed true values in the population.  

Thus though having parameter values that vary in the pop-

ulation is theoretically permissible, we can (at least in theory) 

often convert varying parameters to fixed parameters by re-

placing them with a more complicated set of terms (with fixed 

parameter values). And, importantly, this approach will lead 

to model equations that make better predictions. Thus argua-

bly we don’t need to develop statistical procedures to directly 
handle varying parameter values (unless someone convinc-

ingly shows that the approach with varying parameter values 

is somehow more efficient than trying to model the varying 

parameter values). 

The approach described in the preceding paragraphs won’t 

work if the variation in the values of a varying parameter is 

“truly” random variation that depends on no other variables. 

This is because if a parameter is truly random, then there will 

be no model equation that can account for the parameter’s 

varying values. However, in this case, it is arguably sensible 

to conceptually move the variation out of the parameter and 
into the error term of the original model equation, and to let 

the parameter value itself be the mean (or some other sensible 

measure of central tendency) of the varying distribution. This 

is sensible because it collects all the random variation together 

in the error term, which makes things simpler when we wish 

to use the model equation to predict or control the values of 

the response variable. Of course, if we can demonstrate that 

some of the variation somehow rightfully belongs in the pa-

rameter itself, as opposed to belonging in the error term, then 

this variation is arguably best left in the parameter. 

Thus it seems sensible to view the true values of the pa-

rameters of a model equation as being fixed values in the pop-
ulation, with the provision that a parameter may have varying 

values if a significant advantage of that can be clearly demon-

strated. 

Appendix J: A Case When We Know the Exact Val-
ues of Parameters 

As noted, researchers usually view the values of the parame-

ters of a model equation as being fixed numeric values in the 

population that are constant from one instance of a research 

project to the next. But if we perform scientific research, we 

are only able to obtain estimates of the true values, and the 

estimates will vary somewhat from one instance of a research 
project to the next. 

The view that the true parameter values are fixed in the 

population (i.e., in nature) is highly evident in the physical 

sciences where researchers study the fundamental physical 

constants, such as the gravitational constant, the molar gas 

constant, and the Planck constant (Mohr, Newell, and Taylor 

2016). These constants can all be readily viewed as parame-

ters of model equations of relationships between variables. 

Physical scientists view these constants as being fixed (unvar-

ying) over time and (they presume) throughout the universe, 

as implied by the name “constants”. Physical scientists have 
performed various careful research projects to estimate the 

correct values of these parameters. 

But in an interesting reversal, at the most basic level of the 

physical sciences, the true values of certain parameters aren’t 

estimated from data, but are instead specified by human fiat. 

Then various concepts are defined in terms of these specified-

by-fiat values (Mohr, Newell, and Taylor, 2016, sec. II). 

For example, in Einstein’s model equation, 𝐸 = 𝑚𝑐2, the 

𝐸 is the amount of energy in a piece of matter and the 𝑚 is the 

mass of the piece of matter. We can use this equation to de-

termine the amount of energy in a piece of matter if we know 

its mass. And we can likewise use the equation to determine 

the mass of a piece of matter if we know its energy. 

The 𝑐2 in Einstein’s equation is the parameter of the equa-
tion. Einstein has shown that the value of this parameter is 

equal to the square of the speed of light in a vacuum.  

(Einstein’s equation is astonishing because we ask what 

does the speed of light have to with mass or energy? And how 

could the square of the speed of light be the exact correct 

value for the parameter for this model equation? Of course, 

Einstein has answered these questions to physicists’ complete 

satisfaction.) 

The speed of light in a vacuum, 𝑐, is a special type of pa-

rameter because (since 1983) its value has been specified by 

human fiat (based on earlier estimates and based on almost 
universal agreement among physical scientists). The value is 

specified to be exactly 299,792,458 meters per second (BIPM, 

2006). Physical scientists specify the speed of light in a vac-

uum by fiat because this effectively and exactly defines the 

standard unit of length, the meter. That is, the meter is defined 

to be exactly 1/299,792,458 of the distance that light will 

travel in a vacuum in one second. So, instead of defining the 

unit of length and then determining the speed of light in terms 

of that unit, physical scientists specify the speed of light, and 

then they define the unit of length in terms of that speed. 

The definition of the meter refers to the measurement of 
time, specifically the measurement of one second of time. 

Thus the definition of the meter requires that we have a good 

definition of the unit of time, the second, which is now also 

exactly specified (BIPM, 2006). 

Physical scientists chose to define the unit of length in 

terms of the speed of light because they believe it is sensible 

to view the speed of light in a vacuum as being constant in 

nature (i.e., constant in all instances in the population of cases 

when light travels in a vacuum). Thus this constant value is a 

reasonable foundation for other physical constants—con-

stants that must be estimated from data. Some other parameter 

values that are now or will likely soon be specified exactly are 
the Planck constant, the Boltzmann constant, and the Avoga-

dro constant. 

We can see the difference between the estimated parame-

ter values in the physical sciences and the parameter values 

specified by fiat by noting that all estimated parameter values 

have (perhaps behind the scenes) an associated estimate of 
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their precision or uncertainty. For example, the key article 

specifying the currently accepted values of the more than 300 

fundamental physical constants reflects the fact that almost all 

the constants have been estimated from appropriate research 

data, and thus each of these constants has an associated un-
certainty, which is shown in the “Relative standard uncer-

tainty” column in most of the tables in the article (Mohr, New-

ell, and Taylor, 2016). But a few of the fundamental constants 

have exact fixed values, such as the speed of light in a vacuum 

and the molar mass of carbon 12. These constants have no 

associated estimate of their uncertainty, as illustrated in table 

I in the Mohr, Newell, and Taylor article. 

Physical scientists specify the values of a small number of 

basic parameters and measurement units by fiat because they 

have decided that this is the most efficient way to develop 

variables and measurement of variables in the physical sci-

ences. Physical scientists have chosen the particular set of pa-
rameters and measurement units to be specified by fiat be-

cause these parameters and measurement units are viewed as 

an easy-to-understand, relatively easy-to-use, and (hopefully) 

unshakable foundation on which measurements in the physi-

cal sciences can rest.  

The method of specifying certain parameter values and 

measurement units in physical science by fiat is closely akin 

to specifying a small set of axioms in a logical or mathemati-

cal system and then deriving a set of propositions from the 

axioms. The method is also closely akin to specifying a “basis 

set” of vectors for a subspace of a vector space in linear alge-
bra. Multiple basis sets are possible for a given vector sub-

space, just as it would be possible to choose different sets of 

parameters to be the basis of physical science. 

Gauss appears to have been the first physical scientist to 

specify a parameter value by fiat. As discussed by Roche 

(1998), Gauss was the first scientist to put Newton’s second 

law of motion in modern form as F = ma. Here, F stands for 

the net force exerted on a physical object, m stands for the 

mass of the object, and a stands for the resulting acceleration 

of the object due to the force. Since the acceleration is typi-

cally the response variable in this relationship between varia-

bles, the law is also sensibly specified as a = F/m.  
Gauss in effect specified that the parameter of this equa-

tion has the value one (1.0), thereby implicitly specifying a 

definition of the units of force. Here, by specifying that the 

value of the parameter of the model equation for Newton’s 

second law is the numeral one, Gauss wasn’t defining the con-

cept of force—he was merely defining the units of force.  

Interestingly, Gauss’ decision to set the parameter of 

Newton’s second law to the numeral one has ever since con-

fused many physics students who (despite conventional ex-

planations) are still puzzled why the law appears to have no 

parameter. They are puzzled because they know intuitively 
that in the real world usually things don’t come out as per-

fectly as the model equation suggests, and there is always a 

parameter (coefficient of proportionality) to make the units 

conform. Of course, the parameter is present (as a multiplier) 

in Gauss’ expression of Newton’s second law, but the value 

of the parameter is (by Gauss’ fiat) 1.0, so the parameter is 

invisible. 

Gauss would likely interpret this matter in different terms 

because the concept of a parameter of a model equation of a 

relationship between variables wasn’t as clear in his time as it 

is now. 

Appendix K: Approaches to Publishing Negative 
Results 

As noted in appendix B.9, most scientific journals won’t ac-

cept a report of a research project if the main result is a nega-

tive result. However, some researchers sensibly believe that 

individual negative results should be published because these 

results tell us what has been tried in research, but has failed. 

Thus some researchers have established journals or registries 

that do accept reports of negative results. These journals and 

registries can be found by searching the Internet for “negative 

results” or “research registry”. 

Here are some arguments in favor of publishing negative 

results and in favor of research registries:  

• The publication of negative results helps researchers to 

avoid repeating research projects that have failed, thereby 

conserving resources.  

• The publication of negative results provides useful cau-

tionary information.  

• The requirement that all research be registered before it 

is begun, including a statement of the research hypothesis 

and the research design makes it more difficult for re-

searchers to publish serendipitous secondary findings 

that may have arisen through cherry picking or other re-

searcher errors. 

• For researchers who would like to study negative results, 

the requirement that all research be pre-registered before 

it is begun provides an indirect way to track down nega-

tive results. That is, we can identify research projects that 

have been registered but were subsequently never pub-

lished. The omission of publication of the results of a reg-

istered research project suggests that the research may 

have obtained a negative result. (If the result had been 

positive, then a report of the positive result would likely 

have been published because that would be in everyone’s 

interest.) We can also search the relevant registry to de-
termine whether relevant negative results are recorded in 

the registry because some (though not many) researchers 

will make the effort to report their negative results in the 

registry. 

Here are some arguments against publishing negative results 

and against research registries: 

• In general, negative results are less interesting than posi-

tive results because negative results don’t tell us anything 

beyond what we have already assumed—that the null hy-

pothesis appears to be true.  

• There are various possible reasons to explain why a re-
search project obtained a negative result, including (a) 

the effect may not exist (which is the obvious reason), (b) 

the research may have failed to establish the (as yet un-

known) conditions that are required for the effect to ap-

pear, (c) the researcher have may have been careless, 

which tends to lead to a negative result, or (d) a false-

negative error due to chance may have occurred. Thus a 
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negative result doesn’t necessarily imply that the effect 

under study doesn’t exist (though some less experienced 

people may mistakenly interpret it that way). 

• Most researchers know better than to publish serendipi-

tous findings without first confirming them. This is be-
cause most researchers know that publishing a false-pos-

itive error will harm their reputation when the error is dis-

covered, which is inevitable if the result is of at least 

moderate importance. 

• It is highly unlikely that any researcher would ever ex-

actly repeat the conditions of an unknown failed research 

project. And the difference in conditions between the “re-

peating” research project and the original research pro-

ject might lead the second researcher to obtain a positive 

result. Thus, in general, negative results don’t tell us 

much, but see appendix L.  
If a researcher obtains a negative result, and if the researcher 

can’t find a venue for publishing the result, and if the re-

searcher thinks the result is important, then the researcher can 

avoid the so-called “file-drawer” problem by publishing the 

details of the research in an appropriate Internet archive, per-

haps announcing the publication in relevant email lists or in 

other relevant social media. This enables other interested re-

searchers in the field to be aware of the result. 

It is sensible for any researcher planning a new research 

project to search journals of negative results, research regis-

tries, and the Internet for reports of similar research because 

the reports may contain useful information. 
Venues that report negative results receive less readership 

due to general lack of interest in negative results because most 

researchers don’t have enough time to read about all the pos-

itive results in their field, let alone the usually less-well-cu-

rated and generally less interesting negative results. Negative 

results are sometimes viewed as “failures” and may be em-

barrassing to some researchers. (A researcher shouldn’t be 

embarrassed by a negative result because no researcher can 

expect that all his or her research hypotheses will be upheld.) 

And researchers usually get no reward for publishing a report 

of their negative results. So most researchers sensibly view it 
as a waste of time to prepare a proper report of a research pro-

ject that obtained a negative result. Therefore, they won’t 

spend the necessary time unless they are somehow coerced. 

Time will tell whether repositories of negative results and 

whether research registries are effective enough to justify 

their cost. 

Appendix L: Examples of the Publication of Im-
portant Negative Results 

As noted, scientific journals almost never publish reports of 

research that obtained a negative result because negative re-

sults are generally uninteresting. However, there are instruc-

tive exceptions when negative results are interesting and are 
therefore published in scientific journals. 

For example, the famous Michelson-Morley experiment 

in physics (1887) studied the relationship between the direc-

tion of light travel and the speed of light. This careful experi-

ment failed to find any good evidence of a relationship be-

tween the direction and the speed of light, which is a negative 

result that was surprising at the time of the research. 

The report of the negative result of the Michelson-Morley 

experiment was published in the prestigious American Jour-
nal of Science and was widely discussed. The result was im-

portant because the expected size of the expected effect (i.e., 

the difference in the speed of light as a function of direction 

of light travel) was known, which is unusual in scientific re-

search—we usually don’t know the expected effect size ahead 

of time. (It was possible to compute the minimum possible 

size of the effect from the speed of the Earth in its orbit around 

the Sun.) 

The “failure” of the sufficiently powerful Michelson-Mor-

ley experiment to discover the expected relationship of the 

expected size between the direction and the speed of light 

helped physicists to rule out the possibility of the existence of 
a stationary “luminiferous ether” as a necessary medium for 

the transmission of light. (The ether was thought to be neces-

sary for the transmission of light, just as air, or some other 

gas, liquid, or solid, is a necessary medium for the transmis-

sion of sound—sound won’t travel through a vacuum, but 

light will.) Prior to the Michelson-Morley experiment, many 

physical scientists believed that the stationary ether probably 

existed and was only waiting for someone to find good evi-

dence of it (Wikipedia contributors, 2018). 

The general point that we can take from the Michelson-

Morley experiment is that negative results are interesting if 
(a) a particular effect is expected by many researchers in a 

field, (b) the expected effect size is at least roughly known 

and (c) the research project that obtained the negative result 

is clearly powerful enough and carefully enough performed 

that it ought to detect an effect of the expected size, if such an 

effect is present. This case is rare in scientific research, but 

does occur. In this case if the effect is important, then a report 

of a negative result in carefully performed research will often 

be accepted for publication in a relevant scientific journal. Ji 

(2017) discusses a modern example. 

Another instructive example of publication of negative re-

sults arises in the cold fusion case, which is discussed above 
in appendix B.11. Some of the negative results that were ob-

tained in the attempts to replicate the Pons and Fleischmann 

positive result were published, as noted by Huizenga (1993, 

app. III). This is because the Pons and Fleischmann result, if 

correct, was extremely important because it suggested an in-

expensive, clean, and safe way to produce large amounts of 

energy. Therefore, many people wanted to know whether the 

claimed effect was real, and therefore these people were in-

terested in any reports about attempts to replicate the effect, 

regardless of whether the reports were positive or negative. 

Appendix M: Parameter Sign and Magnitude Errors 

Appendix B.10 discusses false-positive and false-negative er-

rors. Gelman and Tuerlinckx (2000) and Gelman and Carlin 

(2014) discuss two additional general types of errors that can 

occur in scientific research. These authors use a terminology 

that is consistent with the cryptic Type 1 and Type 2 (or Type 
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I and type II) terminology for false-positive and false-nega-

tive) errors respectively. They refer to the additional errors as 

Type S and Type M errors. Here, S stands for “sign” and M 

stands for “magnitude”. However, in the interest of simple 

self-explanatory terminology, this paper refers to these errors 
respectively as “sign errors” and “magnitude errors”. 

As noted, false-positive and false-negative errors can oc-

cur when we are drawing conclusions about the existence of 

an effect. That is, an analysis will sometimes incorrectly con-

clude that an effect exists in the population when it doesn’t 

(detectably) exist, which is a false-positive error. Similarly, 

an analysis will sometimes incorrectly conclude that there is 

no good evidence that an effect exists in the population, when 

the effect does (detectably) exist, which is a false-negative er-

ror. 

The sign and magnitude errors introduced by Gelman and 

his co-authors don’t pertain to the existence of effects, but 
pertain to the estimation of parameter values—they reflect er-

rors about the correct sign of a parameter estimate, and errors 

about the correct magnitude of an estimate. 

If we make a sign error in scientific research, then this im-

plies that we have used a statistical procedure to estimate the 

value of a parameter, but the procedure has estimated the 

value with the wrong sign, a positive sign instead of a nega-

tive sign or vice versa. A sign error is a serious misleading 

error because it is telling us the “opposite” to what is true. 

Fortunately, in cases when we have a statistically significant 

result, and assuming there is no reasonable alternative expla-
nation, sign errors are rare. But the laws of probability imply 

that sign errors can occur, so we should be aware of the pos-

sibility. Researchers eliminate sign errors through appropriate 

replication. 

If we use a statistical procedure to estimate the value of a 

parameter, then the estimated value will almost never be ex-

actly equal to the true value of the parameter in the population, 

which results in a magnitude error. (The unknowable “true” 

value of a parameter is defined as the value that causes the 

model equation to make the very best predictions, where 

“best” can be defined in various sensible theoretical senses.) 

Parameter magnitude errors are less misleading than sign er-
rors, but we should be aware of them because they are inevi-

table. Fortunately, the theory behind the distribution of pa-

rameter estimates implies that magnitude errors will more of-

ten be small than large, as illustrated in figure 1 in the body 

of this paper. (For technical reasons, parameter estimates will 

on average often tend to be slightly higher in absolute value 

than the true population value.) Magnitude errors generally 

aren’t a serious problem if we remember that parameter esti-

mates are only estimates, and all estimates are subject to mag-

nitude errors. 

If we are uncertain about the magnitude of a parameter 
estimate, then we can perform a new research project to obtain 

another independent estimate of the magnitude. Also, statisti-

cal procedures are available to assist us to combine the vari-

ous estimates of the same parameter value into an overall es-

timate which (if we do everything properly) will be more pre-

cise and more accurate overall than any of the individual esti-

mates. 

Researchers and research projects can make other errors 

in addition to false-positive errors, false-negative errors, sign 

errors, and magnitude errors. For example, researchers may 

specify a model equation for a relationship between variables 

that is somehow incompatible with the relationship that exists 
in the population, which is called a model error. Similarly, 

there may be confounding errors, data dredging errors, and so 

on. 

Appendix N: Exceptions to the Idea that Research 
Projects Study Relationships Between Variables 

Section 1 in the body of this paper says that we can view most 

scientific research projects that collect and study data as stud-

ying relationships between variables in data tables. This ap-

pendix discusses some apparent exceptions to this point of 

view.  

Readers who are familiar with the two-sample t-test will 

know that it is a statistical test of whether a continuous varia-
ble has a significantly different average in two different 

groups of entities. Does this test study the existence of a rela-

tionship between variables? Yes. The response variable is the 

continuous variable mentioned in the first sentence of this par-

agraph. And the predictor variable is a “binary” or two-valued 

variable that reflects the difference between the two groups. 

Thus we can readily view the two-sample t-test as a test of the 

existence of a relationship between two variables. And the ex-

tension of the two-sample t-test into multiway analysis of var-

iance is readily viewed as the study of the relationship be-

tween two or more discrete predictor variables and a continu-
ous response variable. 

In a degenerate case of the study of a relationship between 

variables, we may study a single variable (column) in a data 

table in isolation. In this case we have a response variable and 

zero predictor variables, which is logically and mathemati-

cally the limiting case of a relationship between variables 

when the number of predictor variables is reduced to zero. 

In a second degenerate case, we may (in effect) study a 

single entity (row) in a data table in isolation because we are 

unable to obtain multiple rows for the table due to a lack of 

available data. (In this case we often don’t use a table to hold 

the data.) This case often arises in the historical sciences such 
as in archaeology, paleontology, and evolutionary biology, 

which must often work with a sample size of one. This case 

also arises in some branches of the social sciences, such as in 

some areas of anthropology (when the main entity of study 

may be a single society) and in traditional clinical psychiatry 

(when the main entity of study is usually a single psychiatric 

patient). In cases with a sample size of one, the research is 

limited to a description of the value of each variable for the 

entity and possible comparison of the values with other re-

lated entities that are drawn from different populations. And 

relationships between the variables can’t sensibly be studied 
because we need a sample of at least ten or so entities from a 

population before we can sensibly study a relationship be-

tween variables in the entities. (Properly collected larger sam-

ples are better in the sense of being better able to detect rela-

tionships and being better able to enable reliable prediction or 

control.) 
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In another special case, we have no response variable and 

we merely study a set of several predictor variables in a data 

table. Our goal is to find a way to organize the variables (col-

umns of the table) into sensible groups of highly correlated 

variables (super-variables, so to speak), as in exploratory fac-
tor analysis and principal components analysis. We can use 

the appropriate weighted average of highly correlated varia-

bles as a more precise measure of the property that the varia-

bles all measure. We can then use this property as the response 

variable or as a predictor variable in other scientific research. 

Similarly, in another special case, we have no response 

variable, and we use the predictor variables in the table to as-

sist us to organize the entities (rows of the table) into groups 

of similar entities according to the values of the variables for 

the entities, as in cluster analysis. This enables us to assign 

new entities from the population to relevant groups, which is 

sometimes useful to facilitate dealing with the entities. This, 
in effect, defines a new variable that identifies the different 

groups. 

Other exceptions to the view that research projects study 

the relationship between (a) one or more predictor variables 

and (b) a single response variable also exist. Some examples 

are research projects that use the less-frequently-used statisti-

cal methods of multivariate analysis, path analysis, and ca-

nonical correlation analysis. These approaches don’t directly 

study a relationship between one or more predictor variables 

and a single response variable. But they can all be readily 

viewed as sensible variations or extensions of the idea of stud-
ying relationships between variables.  

Thus, though there are exceptions, we often find that a sci-

entific research project (or a portion of a research project) has 

a response variable of central interest and zero or more pre-

dictor variables that the researcher believes can help us to pre-

dict or control the values of the response variable. Sometimes 

these concepts aren’t explicit, so we may have to puzzle a lit-

tle to identify the variables and their roles. Identifying all the 

relevant variables and their roles in a research project greatly 

facilitates understanding.  

Appendix O: Are the Ideas Discussed in this Paper 
“Real”? 

This paper refers to the idea of a parameter of a model equa-

tion “having a value” in a population of entities. What does 

that mean?  

That is, do model equations and parameters of equations 

exist in the external world? Is there, metaphorically, a great 

book somewhere in the sky that drives everything, specifying:  

(a) all the true types of entities and properties of entities in 

the universe 

(b) the true systems of measurement of the values of proper-

ties 

(c) all the true model equations of all the relationships be-
tween the properties, and 

(d) the true values of all the parameters of the equations? 

Or have humans merely imposed these ideas on the world, and 

some or all the ideas have no basis in reality? Or is there some 

other sensible explanation? 

We presently don’t decisively know the answers to these 

questions, though most people believe that at least some of 

the concepts reflect what is “real”. But, unfortunately, we ha-

ven’t found a way to look behind the curtain (if any) to see 

the true reality. 

 

Figure O.1. The Flammarion engraving, as colored by 

Houston Physicist. This entrancing image is discussed 

in Wikipedia. (The figure is copied with CC BY-SA 

4.0 permission.) 

The idea of looking behind the curtain at the true reality is 

highly attractive. But, unfortunately, even if we could look 

behind the curtain, there might still be another curtain con-
cealing the true true reality. (That needn’t discourage us from 

looking for the curtains because the search itself is highly in-

formative and highly satisfying.) 

Fortunately, we needn’t decide whether the ideas are 

“real” in some absolute sense. This is because we (humans) 

have found that the ideas are useful. The ideas are useful be-

cause they assist us with accurate prediction and control, re-

gardless of the true reality of the ideas. The usefulness is due 

to the basic stability over time that we have observed in the 

ideas that we can see behind the noise. The stability is in the 

ideas of entities, properties, measurement, variables, relation-
ships between variables, model equations, parameters of 

model equations, and values of parameters of model equa-

tions. 

The stability begins with the idea of entities. As infants we 

somehow see how to efficiently organize the jumble of in-

coming sensations that we experience. We carry out the or-

ganization by using the concepts of entities and properties. 

Perhaps the first entity we recognize is usually “mother”, who 

has properties associated with actions, looks, sounds, and 

smells. If mother is nearby, then crying is almost guaranteed 

to get her attention, which may be the first relationship be-

tween variables that we learn to use. 
We don’t ask whether “mother” is “real”. This is because 

of course she is real, because (for most children) she is stable 

in our senses across time. The long-term stability of the ideas 

assures us that the ideas are real, or at least real enough for us 
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to sensibly believe that they are real. We experience this sta-

bility in the many entities, properties, and relationships that 

we use in our daily thinking. 

To return to the first question in this appendix, we see that 

empirical research has shown that the stability of the ideas ex-
tends to the values of parameters of properly derived model 

equations. Research has shown that parameters of model 

equations typically (though not always) have stable unchang-

ing values across time (except for changes associable with 

measurement noise). Therefore, the idea of a parameter hav-

ing a value in a population of entities is a sensible real (i.e., 

generally stable across time) idea. 
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