
Which Sums of Squares Are Best
In Unbalanced Analysis of Variance?

Donald B. Macnaughton*

Note added on May 10, 1998:  A few months after I originally published this paper I discovered a particular (infrequently
occurring) situation in which the recommended HTO approach to unbalanced analysis of variance is invalid.  (The HTOS
approach, which I recommend in appendix D as an extension of the HTO approach, is valid in this situation.)  I shall dis-
cuss this matter in a forthcoming paper.

Three fundamental concepts of science and statistics are
entities, variables (which are formal representations of
properties of entities), and relationships between vari-
ables.  These concepts help to distinguish between two
uses of the statistical tests in analysis of variance
(ANOVA), namely
• to test for relationships between the response variable

and the predictor variables in an experiment
• to test for relationships among the parameters of the

model equation in an experiment.
Two methods of computing ANOVA sums of squares are:
• Higher-level Terms are Omitted from the generating

model equations (HTO = SPSS ANOVA EXPERIMEN-
TAL ≈ SAS Type II ≈ BMDP4V with Weights are Sizes)

• Higher-level Terms are Included in the generating model
equations (HTI = SPSS ANOVA UNIQUE = SPSS
MANOVA UNIQUE = SAS Type III = BMDP4V with
Weights are Equal = BMDP2V = MINITAB GLM =
SYSTAT MGLH = Data Desk Type 3).

This paper evaluates the HTO and HTI methods of com-
puting ANOVA sums for squares for fulfilling the two
uses of the ANOVA statistical tests.  Evaluation is in
terms of the hypotheses being tested and relative power.
It is concluded that (contrary to current practice) the HTO
method is generally preferable when a researcher wishes
to test the results of an experiment for evidence of rela-
tionships between variables.

KEY WORDS:  Relationships between variables; Rela-
tionships among parameters; Philosophy of ANOVA;
Power of ANOVA.

 1.  INTRODUCTION
Methods of computing analysis of variance (ANOVA)

sums of squares for unbalanced experiments were intro-
duced by Yates in 1934.  Recently there has been contro-
versy over which method is “best”.  This expository paper

addresses some areas of the controversy.
Section 2 gives references to earlier work.  Sections 3

- 6 discuss preparatory topics.  Sections 7 - 11 describe
two uses of the ANOVA statistical tests.  Sections 12 and
13 describe two methods of computing ANOVA sums of
squares.  Sections 14 - 18 evaluate the two methods for
fulfilling the two uses.  Five appendices extend the ideas.

I hope that knowledgeable readers will indulge my
initial concentration (in sections 3 - 6) on some fundamen-
tal concepts of human thought.  These concepts may at
first seem trivial or obvious.  However, these concepts de-
serve careful study because they are foundations for many
other concepts in science and statistics, including the
conclusions of this paper.

Most of the discussion that follows is non-mathemati-
cal.  However, readers who enjoy a mathematical cres-
cendo may get some satisfaction from the elegant sim-
plicity of works of three statisticians excerpted in appen-
dix C.

2.  HISTORY
Readers wishing to trace the development of ideas

about unbalanced ANOVA will find the works by the
following authors of interest (given here in chronological
order):  Yates (1934), Kempthorne (1952), Scheffé
(1959:112-119), Elston and Bush (1964), Gosslee and Lu-
cas (1965), Bancroft (1968), Overall and Spiegel (1969),
Speed (1969), Francis (1973), Urquhart, Weeks, and
Henderson (1973), Appelbaum and Cramer (1974),
Burdick, Herr, O’Fallon, and O’Neill (1974), Carlson and
Timm (1974), Kutner (1974), Kutner (1975), Hocking and
Speed (1975), Overall, Spiegel, and Cohen (1975), Golhar
and Skillings (1976), Hocking and Speed (1976), Keren
and Lewis (1976), O’Brien (1976), Speed and Hocking
(1976), Heiberger and Laster (1977), Nelder (1977), Ait-
kin (1978), Herr and Gaebelein (1978), Hocking, Hack-
ney, and Speed (1978), Speed, Hocking, and Hackney
(1978), Urquhart and Weeks (1978), Burdick (1979),
Frane (1979), Bryce, Scott, and Carter (1980), Burdick
and Herr (1980), Cramer and Appelbaum (1980), Good-
night (1980), Hocking, Speed, and Coleman (1980),
Searle (1980), Steinhorst and Everson (1980), Overall,
Lee, and Hornick (1981), Rubin, Stroud, and Thayer
(1981), Searle (1981), Searle, Speed, and Henderson
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(1981), Spector, Voissem, and Cone (1981), Calinski
(1982), Howell and McConaughy (1982), Nelder (1982),
Steinhorst (1982), Aitkin (1983), Littell and Lynch (1983),
Schmoyer (1984), Johnson and Herr (1984), Hocking
(1985), Elliott and Woodward (1986), Pendleton, Von
Tress, and Bremer (1986), Finney (1987), Knoke (1987),
Milligan, Wong, and Thompson (1987), Searle (1987),
Helms (1988), Singh and Singh (1989), Turner (1990),
and Macdonald (1991).  An excellent overview and fur-
ther early references are given by Herr (1986).

3.  ENTITIES
If you observe your train of thought, you will prob-

ably agree that you think about various “things”.  For ex-
ample, during the next few moments you might think
about, among other things, a friend, an appointment, to-
day’s weather, and an idea.  Each of these things is an ex-
ample of an entity.

The concept of entity is perhaps the broadest of all
human concepts, because literally everything (whether it
exists or not) is an instance of an entity.  Table 1 illus-
trates the broadness by listing a variety of entity types.

cussions usually concern one or more types of entities,
which are best referred to by their type names.  (For ex-
ample, medical scientists often study a of type of entity
called human beings.)  Or discussions may refer to one or
more individual entities, which are best referred to by
their individual names.  However, it is useful to be aware
of the central role that the concept of entity plays in hu-
man thought.

4.  PROPERTIES OF ENTITIES
Associated with every entity are attributes or proper-

ties.  Table 2 lists some entity types and some of the prop-
erties associated with entities of each type.

TABLE 2

Entity Types with Examples of
Some of Their Properties

Entity Type Properties of Entities of this Type

physical objects weight
chemical composition
age

persons height
intelligence quotient
blood type
political affiliation
whether presently alive

forces magnitude
direction
locus of application

national economies gross national product
cost of living
rate of inflation

populations size
proportion of the population 

having a specified level of a 
property

events probability of occurrence
whether occurred
duration

works of art beauty

TABLE 1

A List of Some Common Entity Types
(some categories overlap)

physical objects (examples:  trees, automobiles, protons)

processes (examples:  a leaf blowing in the wind, a ma-
chine building another machine, a chemical reaction)

events

organisms

minds

symbols

forces (examples:  force needed to lift a physical object,
magnetic forces)

mathematical entities (examples:  sets, functions, num-
bers, spaces, vectors)

relationships between entities

properties of entities

Most people view most entities as existing in two dif-
ferent places:  in the external world and in our minds.  We
use the entities in our minds mainly to stand for the enti-
ties in the external world.  This helps us to understand the
external world.  In language we represent entities with
nouns.

The concept of entity does not often appear in scien-
tific or statistical discussions because it is not often neces-
sary to discuss things at such a general level.  Instead, dis-

Properties are an important aspect of entities because
we can only know or experience an entity by knowing or
experiencing its properties.

Kendall, Stuart, and Ord (1987:1.1-1.3) discuss the
role of properties in statistics.

5.  VALUES OF PROPERTIES OF ENTITIES
For any particular entity, each of its properties has a
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value.  People usually report the value of a property of an
entity by one or more words or by a number.  For exam-
ple, table 3 lists some of the properties and the associated
values for the entity known as the United Nations Build-
ing in New York City.

And the intersection of a row and a column contains the
value of the property associated with the column for the
particular entity that is associated with the row.

• The concepts of entities and properties appear directly in
knowledge representation in artificial intelligence
(expert) systems where they are sometimes organized
into “semantic networks” or “frames”.

• Entities and properties appear in object-oriented pro-
gramming languages in the sense that the objects and
attributes (variables) of such languages are simply enti-
ties (or sometimes classes of entities) and properties re-
spectively.

6.  RELATIONSHIPS BETWEEN PROPERTIES
(RELATIONSHIPS BETWEEN VARIABLES)

6.1  Science as a Study of Relationships Between Prop-
erties

In view of the broad generality of the concepts of
entities and properties, it is helpful to consider scientific
research in terms of those concepts.  In those terms, much
of science can be seen as a study of relationships between
properties of entities.

One can characterize a relationship between proper-
ties as follows:

There is a relationship in entities between a property
y and one or more other properties x1, x2, ..., xp if any
of the following (equivalent) conditions are satisfied:
• the measured value of y in the entities “depends” on

the measured values of the x’s in the entities or
• the measured value of y in the entities varies wholly

or partially “in step” with the measured values of
the x’s in the entities or

• y is some function of the x’s in the entities—that is

y f x x xp= +( , , , )1 2 K e (1)

(where I discuss the term e  below).

For example, medical scientists have discovered that
there is a relationship in humans between the property
“concentration of insulin in the bloodstream” and the
property “rate of carbohydrate metabolism”.  Specifically,
as insulin in the bloodstream increases (within a certain
range), carbohydrate metabolism also increases.

Scientists often summarize their findings of a rela-
tionship between properties with a graph, such as figure 1.

We can see the generality of the concept of a
relationship between properties of entities if we examine
the so-called laws of science, and if we note that many of
these laws are statements of relationships between proper-
ties of entities.  For example, the ideal gas law, PV = nRT,
that relates pressure (P), volume (V), amount (n), and
temperature (T) of an ideal gas is a statement of a relation-
ship between certain properties of a mass of gas.  (The R
is the constant of proportionality.)

TABLE 3

Properties of the United Nations Building
and Their Associated Values

Property Value of the Property

height tall (i.e., the word tall)

height in meters 165.8

primary building materials concrete, glass, steel

In language we often use adjectives and adverbs to
report the values of properties.  For example, we might
use the adjective tall to report (the value of) the height
(property) of a building, or the adverb quickly to report
(the value of) the speed (property) of (the process of)
someone running in a race.

Adjectives and adverbs are useful for reporting the
values of properties because they are compact—within a
single word we can both identify the property of interest
and indicate a particular value of it.  However, adjectives
and adverbs are also imprecise.  If we need higher preci-
sion in the report of the value of a property, we can use
numbers because numbers can represent any degree of
precision we wish.

If we wish to determine the value of a property of an
entity, we can apply an appropriate measuring instrument
to the entity.  If the instrument is measuring correctly, it
will return a value to us that is an estimate of the value of
the property in the entity at the time of the measurement.

References to values of properties of entities are such
a fundamental part of people’s thinking that we usually
make these references automatically, without being spe-
cifically aware that we are using the general concept of a
value of a property of an entity.  Therefore, the impor-
tance of values of properties of entities in models of the
external world may be sometimes underestimated.

Computer models of the external world are playing
increasingly important roles in science, business, and gov-
ernment.  Therefore, it is interesting to note the central
roles that entities, properties, and values play in such
models:
• Each table in a computer database is associated with a

different type of entity about which the user of the data-
base wishes to keep information.  For any given table,
the rows of the table represent different instances of en-
tities of the type associated with the table.  The columns
represent different properties of entities of this type.
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TABLE 4

Classification of “Laws” Defined in
Dictionary of Scientific Terms

Type of Statement % Count*

relationship between properties 75 184

non-relationship between properties
(including 10 conservation laws)

11 27

law of mathematics
(axiom or theorem)

6 14

relationship between entities 4 9

value of a property 2 5

distribution of the values of a property 2 4

existence of a property 1 2

existence of an entity <1 1

other 0 0

*The sum of the counts is greater than 213 because some laws contained
two or more independent statements, and each such statement was classi-
fied separately.  For some laws, instances of the one or more statements
that constitute the law could sometimes, by taking different points of view,
be classified in more than one of the first eight ways.  In those cases, the
count reflects the way of classifying the statement that was judged easiest
to understand.
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Glucose
Uptake Rate

in mg/(kg-min)

Figure 1.  A graph showing the relationship between carbohy-
drate metabolism (specifically glucose uptake) and insulin con-
centration for fifteen normal young adults.  Data are from an
experiment by Gottesman et al (1982).  The height of each black
square indicates the mean glucose uptake when the subjects
were maintained at the insulin concentration shown on the hori-
zontal axis directly beneath the square. (Plasma glucose was
maintained at approximately 92 mg/dl throughout.)  The hori-
zontal bars show plus and minus the standard error of each glu-
cose uptake mean.

Similarly, Einstein’s equation, E = mc2 is a statement
of a relationship between two properties of matter:  con-
tained energy (E) and mass (m).  (The c2 is the constant of
proportionality, which Einstein has shown to be equal to
the square of the speed of light.)

To explore the generality of the concept of a relation-
ship between properties, two assistants each scanned each
page of the 2088-page McGraw-Hill Dictionary of Scien-
tific and Technical Terms (Parker 1989) for entries that
contain the word law in the definiendum.  They found
213 entries that define different “laws” of science.  For
each entry I then tried to express the definition in terms of
the concepts of entities, properties, and relationships be-
tween properties.  This yielded the classification shown in
table 4.

The most common type of statement in science—a
statement of a relationship between properties—is also the
most important because knowledge of relationships be-
tween properties gives us the ability to predict (and some-
times control) the values of properties in new similar enti-
ties, and such ability is often of great value.  For example,
knowledge of the relationship between “concentration of
insulin in the bloodstream” and “rate of carbohydrate me-
tabolism” in humans has helped doctors to control diabe-
tes, a disease that is characterized by poor carbohydrate
metabolism.

Summarizing:  Study of relationships between prop-

erties of entities is a central activity of science because
knowledge of such relationships gives us the ability to
predict and control (values of) properties, and such ability
is often of great value.

6.2  Properties as Variables
Bypassing some details (see Macnaughton 1997), we

can roughly say that scientists and statisticians usually re-
fer to properties as variables.  Much of statistics is aimed
at providing techniques to help scientists study relation-
ships between variables, whether through the t-test,
ANOVA, regression, exploratory data analysis, nonpara-
metric analysis, categorical analysis, time series analysis,
survey analysis, factor analysis, correspondence analysis,
or various other techniques.

In the rest of the paper I use standard terminology and
discuss properties and relationships between properties
mainly in terms of variables and relationships between
variables.  However, readers new to the ideas may find it
helpful to keep in mind that the variables that are dis-
cussed in science are simply representations of properties
of entities.  And the value of any variable represents the
value of the property in the associated entity (usually at a
particular time).
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(In the physical sciences, properties, variables, or val-
ues are sometimes called physical quantities.)

Barnett (1988) gives a general discussion of the con-
cept of a relationship between variables.

6.3  Response Variables and Predictor Variables
In studying relationships between variables, scientists

often classify the variables in a research project into re-
sponse variables and predictor variables.  The response
variables are the variables that the scientist would like to
discover how to control (or at least predict).  The predic-
tor variables are the variables that the scientist will control
(or just measure) in an attempt to discover how to control
(predict) the values of the response variables.

For example, when medical scientists study the rela-
tionship between “concentration of insulin in the blood-
stream” and “rate of carbohydrate metabolism”, they view
“rate of carbohydrate metabolism” as the response vari-
able because they wish to learn how to control carbohy-
drate metabolism by controlling insulin concentration (and
not the other way around).

Most scientists find it efficient to concentrate on
learning how to control or predict a single variable at a
time in the entities they are studying.  Therefore, without
loss of relevant generality, this paper discusses research
projects (or standalone units of analysis in research pro-
jects) that have a single response variable (which may be
measured just once or repeatedly in entities) and one or
more predictor variables.

6.4  A Definition of a Relationship Between Properties
(Variables)

The characterization of a relationship between prop-
erties given in section 6.1 is statistically weak so, since we
need a statistical definition below, let us convert the char-
acterization into such a definition.  I begin with two pre-
liminary definitions:

Definition:  The expected value of a variable in a
population is the average value of the variable across
all the entities in the population under a given set of
conditions.

Definition:  The expected value of a variable in a
population conditioned on the values of one or more
other variables is the average value of the variable
across all the entities in the population under a given
set of conditions including the condition that the other
variables have particular stated values.

I shall represent the expected value of some variable
y  as E y( ) , and I shall represent the expected value of y

conditioned on the values of variables x xp1, ...,  as

E y x xp( | ,..., ).1

Using the concept of expected value, let us now con-
sider a formal definition of a relationship between proper-
ties (variables):

Definition:  If y  is a variable that reflects a measured
property of entities in some population, and if
x xp1, ...,  are a set of one or more other variables that
reflect distinct other measured properties of the enti-
ties (or of the entities’ environment), then a relation-
ship exists in the entities between y  and the x xp1, ,K
if, for each integer i, where 1 £ £i p

E y x x x x x

E y x x x x

i i i p

i i p

( | ,..., , , ,..., )

( | ,..., , ,..., ).

1 1 1

1 1 1

- +

- +π

If p  = 1, the inequality simplifies to
E y x E y( | ) ( ).1 π

Each of the p  inequalities is deemed to be satisfied if
there is at least one set of specific values of the xs that
satisfies the inequality.  (Notes:  (1) A different set of
values of the xs may be used for each inequality; (2)
if y  is not a numeric variable, then for a relationship
to exist, the p  inequalities must each be satisfied for
at least one recoding of the values of y  into numeric
values.  A different recoding may be used for each in-
equality.)

Note that this definition of a relationship between
properties is operationally equivalent to the characteriza-
tions of a relationship given in section 6.1 because if a
state of affairs satisfies the definition, it will also satisfy
any of the characterizations, and vice versa.

Other mathematical definitions of a relationship be-
tween properties are given (in terms of causal relation-
ships) by Granger (1980), Chowdhury (1987), and Poirier
(1988).

6.5  The Null and Alternative Hypotheses
For any type of entity and any response variable and

any set of one or more predictor variables, exactly one of
the following two hypotheses is true:
• Null Hypothesis:  there is no relationship between the

response variable and any of the predictor variables in
the population of entities of this type

• Alternative Hypothesis:  there is a relationship between
the response variable and one or more of the predictor
variables in the population.

Scientists usually begin study of a relationship be-
tween variables with the formal assumption that null hy-
pothesis is true.  (Informally we usually suspect and hope
that the alternative hypothesis is true or there would be no
point in seeking evidence of relationships in the particular
set of variables we are studying.)  The practice of begin-
ning with the (impossible-to-prove) assumption that the
null hypothesis is true is entailed by the principle of par-
simony, which tells us to keep things as simple as possi-
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ble.  The simplest situation is that of no relationship, so
we begin with that assumption.

After making the assumption that the null hypothesis
is true, scientists who wish to study a relationship then
perform an appropriate research project in an attempt to
invalidate the assumption.  If the results of the research
project show reasonable evidence that a relationship ex-
ists, then the scientific community (through informal con-
sensus) rejects the null hypothesis and concludes that a
relationship between variables similar to that suggested by
the results probably actually exists.

Tukey (1989:176) suggests that there may be a rela-
tionship (albeit sometimes very weak) in entities between
all measurable pairs of variables, regardless of the vari-
ables’ identities.  Given that point, we may ask why it is
necessary to begin with the assumption that the null hy-
pothesis is true.  Researchers begin initial study of a rela-
tionship between variables with the (formal) assumption
that there is no relationship in order to avoid the problem
of thinking that they know more about a relationship than
they actually do.  And only if all of the following condi-
tions are satisfied do careful researchers accept the exis-
tence of a particular relationship between variables:
• someone has performed an appropriate empirical re-

search project
• the research project has found reasonable (see below)

evidence of a relationship between the variables
• the research project has been carefully scrutinized for er-

rors (and perhaps replicated) by the scientific commu-
nity (and anyone else who is interested)

• nobody has been able to come up with a reasonable al-
ternative explanation of the results of the research pro-
ject (see Mosteller 1990, Lipsey 1990, Macnaughton
1997).

6.6  Experiments and Causation
When scientists can control (“manipulate”) the values

of variables (as opposed to being able only to observe
them), they usually study relationships between variables
by performing “experiments”.

Definition:  An experiment consists of our manipulat-
ing one or more predictor variables in one or more
entities while we observe a response variable in the
entities.

Of course, we manipulate a variable in entities by
somehow causing the variable to have certain values of
our choosing in the entities.  For example, in a medical
experiment we can manipulate the concentration of insulin
in the bloodstreams of patients by administering differing
amounts of insulin to them.

When feasible, experiments are preferred to observa-
tional (i.e., non-manipulative) research projects because
relationships between variables found in experiments

usually allow us to infer causation while relationships
between variables found in observational research projects
usually do not allow us to (confidently) infer causation—
they only allow us to infer association.

This paper concentrates on analyzing the results of
experiments.  And although some of the points below also
apply to non-experimental (i.e., observational) research
projects, interpretation of such research projects is more
difficult, and beyond the present scope.

Landmark books about the design and analysis of ex-
periments are by Fisher (1935 [1990]), Kempthorne
(1952), Cochran and Cox (1957 [1992]), Cox (1958
[1992]), Finney (1960), Winer (1971), and Box, Hunter,
and Hunter (1978).

6.7  ANOVA
If certain often-satisfiable assumptions (discussed

below) are adequately satisfied, ANOVA is well suited to
analyze the results of an experiment to help determine if
there is evidence of a relationship between the response
variable and one or more of the predictor variables.

ANOVA works by taking as input the results of a
properly-carried-out experiment.  That is, the input is the
(ordered) set of values of the response and predictor vari-
ables that were measured in the entities that participated
in the experiment.  Through a mathematical procedure,
ANOVA provides as its output a set of numbers called p-
values. A p-value is:

the probability of obtaining the evidence
(or stronger evidence)

available from the results of the experiment
that the particular type of relationship

(between the response variable
and the predictor variables)

that is suggested by the results
actually exists

if in fact there is no such relationship.
Thus the lower a p-value, the more improbable it is

that the obtained result would be obtained if there is no
relationship.  Thus if a p-value for a relationship is low
enough, we can tentatively reject the null hypothesis and
conclude that there is a relationship between the response
variable and the relevant predictor variable(s).

In evaluating the work of others, scientists often use
the reasonable convention that a p-value must be less than
a critical value of .05 (or sometimes .01) before they will
reject the null hypothesis and tentatively conclude that the
relationship that is associated with a p-value actually ex-
ists.

The practice of computing a p-value and examining it
to determine whether it is less than a critical value is
called a statistical test of the hypothesis that the associ-
ated relationship exists.

Once we have concluded (from a statistical test or
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otherwise) that a particular relationship exists, we can
then use our knowledge of the relationship to help us
make predictions or exercise control.

6.8  Does ANOVA Detect Relationships Between Vari-
ables?

Some readers may question whether we can view the
use of the statistical tests in ANOVA (or in its simplest in-
carnation, the t-test) as a means for detecting relationships
between variables.  For example, consider a research pro-
ject that uses a t-test to check if there evidence of a differ-
ence between women and men in their response to some
standard form of medical treatment (as measured by some
medically acceptable measure of the response).  Most
readers will agree that a response variable is clearly pre-
sent in this research project, namely the measured value of
the “response” to the treatment for each person who par-
ticipates in the research project.  But some readers may
question whether there is a predictor variable, or whether
it is useful to view this research project in terms of seek-
ing evidence of a relationship between variables.

We can answer these questions by first noting that the
predictor variable in the research project is the variable
“gender”, which reflects an important property of the pa-
tients.  (“Gender” is a variable in the sense that for any
patient in the research project this variable has a particular
value, namely, “female” or “male”, and the values vary
somewhat from patient to patient.)  Thus we can view the
research project as an attempt to see if there is a relation-
ship in humans between the variables “gender” and
“response”.

Similarly, in an n-way ANOVA there are n different
predictor variables, each of which represents a different
property of the entities that are under study, or of the enti-
ties’ environment.  (Of course, in the case of a treatment
that is applied to the entities, the associated predictor
variable reflects a property of the entities after they have
received the treatment.  That is, the predictor variable re-
flects the amount of the treatment—possibly zero—that an
entity received.)  Thus, as we shall see in more detail be-
low, we can use ANOVA to help us determine whether
there is evidence of a relationship between the response
variable and one or more of the predictor variables in an
experiment.

But even if we agree that there are response and pre-
dictor variables present in every ANOVA, the question
still remains whether it is useful to view ANOVA as a
technique for detecting relationships between variables.
To answer that question note that:
• It is precisely instances of the concept of relationships

between variables in entities that most scientists are in-
terested in detecting and describing when they use
ANOVA in research projects.  That is, most scientists
are precisely interested in determining whether the ex-

pected value of some variable y depends on the values of
certain other x-variables.  They are interested in making
this determination because if they find such a relation-
ship, then we (as society) can confidently use the
knowledge of the relationship to make predictions or to
exercise control.

• As noted above, virtually all the statistical techniques as
they are used in empirical research can be viewed as
techniques for studying (i.e., detecting and describing)
relationships between variables.  Viewing ANOVA and
the other techniques as techniques for studying relation-
ships between variables helps to unify the techniques,
and this unification facilitates understanding.  The unifi-
cation is especially helpful to newcomers to the field of
statistics because it helps them to view the field in terms
of an easy-to-understand and practical concept.  (The
statistical techniques for studying standalone distribu-
tions are instances of the study of relationships between
variables in the sense that such techniques study rela-
tionships between a response variable and a set of
predictor variables when the set of predictor variables is
empty.  The techniques for studying relationships with
non-empty sets of predictor variables collapse neatly
into this degenerate case.)

• Viewing ANOVA as a technique for studying relation-
ships between variables helps to unravel certain
important statistical problems, as we shall see later in
this paper.

6.9  Why We Need Statistical Tests
Of course, we need not use a statistical test if we have

discovered a very strong relationship between variables
because in that case the results of the research project will
usually leave no doubt as to the existence of the relation-
ship.  However, nowadays new strong relationships be-
tween variables are not often discovered, perhaps because
most of the strong relationships have already been discov-
ered.  Thus most relationships that are currently studied
are weak enough that statistical tests are necessary.

Recall Tukey’s (1989:176) suggestion that there may
be a relationship (albeit sometimes very weak) in entities
between all measurable pairs of variables, regardless of
the variables’ identities.  Given that suggestion (and de-
spite the arguments made in section 6.5 for beginning by
assuming that the null hypothesis is true), we can still ask
why we need to use statistical tests to determine whether
there is a evidence of a relationship between a particular
pair of variables when, in fact, there almost surely is.

We need statistical tests because, as Tukey notes, in
addition to wishing to know with confidence whether
there is a relationship between the variables, we usually
need information about the direction or profile of the re-
lationship.  (The profile tells us whether, when the value
of a given predictor variable increases in entities, the
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value of the response variable can be expected to increase
or to decrease or perhaps to sometimes increase and
sometimes decrease depending on the values of other
variables.)  Only when we perform statistical tests can we
be confident that the modest relationships between vari-
ables that are typically suggested by the results of modern
research accurately reflect profiles that we can expect to
find in similar entities in similar situations.

6.10  Interactions and Simple Relationships Between
Variables

It is useful to classify relationships between variables
into interactions and simple relationships:

Definition:  If:
• there is a relationship in entities between a re-

sponse variable y and p predictor variables x1, x2,
..., xp where p ≥  2 and

• the conditioning of y on the x’s cannot be repre-
sented as a mathematical sum of separate simpler
conditionings of y on one or more proper subsets of
the same x’s and

• there is no higher-level interaction between the x1,
x2, ..., xp and other predictor variables with respect
to their joint relationship to y

we say the relationship is a p-way interaction between
the x1, x2, ..., xp with respect to their joint relationship
to y.

(The minor difficulty with the word interaction ap-
pearing in the body of its own definition can be resolved
with a more elaborate recursive definition, which I omit
here for simplicity.)

Note that I have defined the concept of an interaction
in terms of the more fundamental concept of a relationship
between variables.  Interactions were invented by Fisher
(1935, ch. VI) mainly as a means for detecting any form
of relationship that might exist between the response vari-
able and the predictor variables in a research project.

Definition:  If:
• there is a relationship in entities between a re-

sponse variable y and a single predictor variable x1

and
• there is no evidence that there is an interaction

between x1
 and any other predictor variable(s) with

respect to its relationship to y
we say the relationship is a simple relationship
(sometimes called a main effect relationship).

The last bulleted paragraph in each of the preceding
two definitions is usually not included in definitions of
interaction and simple relationship.  I discuss the useful-
ness of these paragraphs in section 2 of appendix B.

6.11  Summary And Preview
In sections 3 - 6 I discussed the concept of a relation-

ship between variables and I noted that one use of the
ANOVA statistical tests is to test for evidence of relation-
ships between the response variable and the predictor
variable(s) in the population of entities that is studied in
an experiment.  In section 10 (after some preparatory
work in sections 7 - 9) I discusses a contrasting second use
of the ANOVA statistical tests.

7.  GROUP TREATMENT TABLES
We can summarize the layout of most experiments

with a group treatment table, as used extensively by Winer
(1971).  For example, table 5 summarizes a 2 ¥  3 ex-
periment in which two predictor variables, A and B, are
manipulated while we observe a response variable, y.

TABLE 5

Group Treatment Table
for a 2 ¥  3 Experiment

______________________

 These Variables
 are Manipulated
Between Groups
    of Entities            Group
______________

       A  B
______________________

      a0 b0 g1

      a0 b1 g2

      a0 b2 g3

      a1 b0 g4

      a1 b1 g5

      a1 b2 g6
______________________

Each of the g’s in the right side of the table represents
a different “treatment group” of the entities that partici-
pate in the experiment.  For example, in a medical ex-
periment the treatment groups might be groups of patients.

The values shown in the two columns in the left side
of the table show which combination of the values of the
two predictor variables (i.e., which “treatment combina-
tion”) we apply to the entities in each of the six groups.
For example, the fourth row of the table indicates that we
apply level 1 of A and level 0 of B to the entities in group
g4.  In a medical experiment treatment A might be insulin
and treatment B might be another drug that we suspect
will enhance the effectiveness of insulin.

Of course, after the entities have received their treat-
ment combinations for an appropriate length of time, we
measure the value of the response variable in each entity.
In a medical experiment the response variable might be
some measure of the rate of carbohydrate metabolism in
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patients.
After we have carried out the experiment, if the un-

derlying assumptions of ANOVA (see below) are ade-
quately satisfied, we can then use ANOVA to help us
analyze the results of the experiment to determine if there
evidence of a relationship between the response variable
(y) and one or both of the predictor variables (A and B).

The experiment summarized in table 5 is called a 2 ¥
3 experiment because the first predictor variable (A) has
two different values in the experiment and the second
predictor variable (B) has three different values, and all of
the 2 ¥  3 = 6 combinations of values of the predictor
variables are present in the experiment.

In experiments that use repeated measurements, we
can use the column dimension in the right side of a group
treatment table to show both the repeated measurement of
the response variable in the entities and the different val-
ues of the within-entities predictor variables in the groups
of entities in the experiment.  For example, table 6 sum-
marizes a 2 ¥  3 ¥  2 repeated measurements experiment
in which we manipulate the first two variables (A and B)
within the experimental entities, and we manipulate (or
possibly simply observe) C between the groups of entities.

good test of whether you understand the design of an ex-
periment is whether you can draw a group treatment table
for it.

8.  FULLY CROSSED EXPERIMENTS,
UNBALANCED EXPERIMENTS,

AND EMPTY CELLS
Definition:  An experiment is fully crossed if all the
possible combinations of the values chosen for the
predictor variables are present in the experiment.
(Fully crossed experiments are also sometimes called
factorial experiments.)

The experiments summarized in tables 5 and 6 are
both fully crossed.  Scientists often use fully crossed ex-
periments because such experiments allow study of all the
possible interactions between the predictor variables with
respect to their joint relationship to the response variable,
and because the results of such experiments are relatively
easy to analyze.

Customarily, scientists design experiments so that the
same number of experimental entities is assigned to each
cell in the group treatment table.  For example, if the ex-
periment summarized in table 5 is a medical experiment,
we might design it so that each cell in the table has a
group of twenty patients assigned to it, implying that there
is a total of 6 ¥  20 = 120 patients in the experiment.

If a fully crossed experiment has the same number of
experimental entities assigned to each cell in the group
treatment table, the experiment is a balanced experiment;
otherwise the experiment is unbalanced.  Searle (1988)
gives a more complete definition of balance, which covers
experiments that are not fully crossed.

Scientists usually design experiments to be balanced
experiments because an unbalanced experiment usually
provides no advantage over the associated balanced ex-
periment, and because unbalanced experiments are harder
to analyze.  However, after an experiment is performed,
some of the data for one or more of the experimental enti-
ties will often be, for some reason, unavailable, and there-
fore the experiment will have become unbalanced.  For
example, a patient may withdraw from a medical experi-
ment partway through, and thus at least one value of the
response variable for the patient will be unavailable, and
therefore the experiment will have become unbalanced.

This paper addresses the common situation in ex-
perimental research in which:
• an experiment whose results are being analyzed is un-

balanced
• there is no evidence that the imbalance is related to the

values of the response or predictor variables
• each cell in the group treatment table has at least one

value of the response variable associated with it—that is,
there are no “empty” cells in the table.

TABLE 6

Group Treatment Table for a
2 ¥  3 ¥  2 Repeated Measurements Experiment

 ______________________________________________

    This Variable                      These Variables are
         Varies                   Manipulated Within Entities
  Between Groups     _____________________________

      of Entities                   a0                     a1           ← A
 ______________     __________     __________

            C                  b0    b1    b2     b0    b1    b2    ← B
 
______________________________________________

            c1                 g1    g1    g1     g1    g1    g1

            c2                 g2    g2    g2     g2    g2    g2
 ______________________________________________

As before, the g1’s and g2’s represent the two
treatment groups of entities in the experiment, and the a0,
a1, and b0, b1, b2, and c1, c2 denote the different values
of predictor variables A, B, and C respectively.  The table
implies that we measure the value of the response variable
six successive times in each entity in each group (one time
for each column in the right side of the table, and each
time after setting the within-entities predictor variables to
the appropriate values), hence the name “repeated meas-
urements”.

We can also use group treatment tables to describe
experiments that use blocking designs, or fractional facto-
rial designs, or incomplete block designs, or nested de-
signs, or other more unusual experimental designs.  A
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(Experiments with empty cells are uncommon be-
cause most scientists are aware that research projects with
empty cells are more difficult to analyze, so they usually
design their experiments in ways that minimize the chance
that empty cells will occur.)

9.  MODEL EQUATIONS
9.1  The Cell-Means Model Equation

The cells in the right side of a group treatment table
(i.e., the locations of the g’s) are the “cells” of the cell-
means model equation that scientists sometimes use to
model the behavior of the response variable in experi-
ments.  For the experiment summarized in table 5, the
cell-means model equation is:

yijk ij ijk= +m e (2)
where:
yijk  = the value of the response variable for the kth entity

in the treatment group (cell) that received level i of
A and level j of B (i = 1, 2; j = 1, 2, 3)

m ij  = the hypothetical expected value of the response
variable for the measurements of the response vari-
able in all the entities in the population if they were
given the treatment combination associated with
the ij cell in the group treatment table under condi-
tions identical to those of the experiment

e ijk  = an “error” term reflecting the difference between
the m ij  and the yijk .

Irwin (1931), Elston and Bush (1964), Speed (1969),
and Urquhart, Weeks, and Henderson (1973) were early
contributors to the development of the cell-means model
equation.

9.2  The Error Term and the Underlying Assumptions
The error term in an ANOVA model equation is im-

portant because the ANOVA p-values that are computed
from the results of an experiment may be incorrect unless
the following assumptions about the error term are ade-
quately (but not necessarily fully) satisfied:
• For all the (combinations of) values of the predictor

variable(s) used in the experiment, there must be no re-
lationship between the error term and the response vari-
able, or between the error term and any of the predictor
variables either in the population of entities under study
or in the sample of entities used in the experiment.

• For each cell in the group treatment table, the values of
the error term must be distributed with a normal distri-
bution in both the population and the sample.

• The distribution of the values of the error term must
have the same expected variance in all the cells in the
group treatment table in both the population and the
sample.

In this paper I refer to these assumptions as the
“underlying assumptions” of ANOVA.  It is, of course, an

important step in analyzing the results of any experiment
to check how well these assumptions are satisfied.  Fortu-
nately, they are adequately satisfied in many experiments,
especially if the entities in the sample are randomly se-
lected from the population (not always feasible), and if the
entities in the sample are randomly assigned to the various
treatment groups.

9.3  The Overparameterized Model Equation
We can also model the behavior of the response vari-

able in the experiment summarized in table 5 as:
yijk i j ij ijk= + + + +m a b f e (3)

where:
yijk  = the value of the response variable for the kth entity

in the treatment group (cell) that received level i of
A and level j of B (the same as in the cell-means
model equation)

m  = the hypothetical grand mean of the values of the
response variable that would be obtained if a bal-
anced version of the experiment was performed on
the entire population of entities that are under study
(other definitions consistent with this paper are
possible)

a i  = the hypothetical simple effect on the mean of the
values of the response variable (i.e., on the mean of
the values of the yijk ) of giving an entity level i of
variable A

b j  = the hypothetical simple effect on the mean of the
values of the response variable of giving an entity
level j of variable B

f ij  = the hypothetical interaction effect on the mean of
the values of the response variable (independent of
either of the above two simple effects) of concur-
rently giving an entity level i of variable A and
level j of variable B [sometimes also written
( )ab ij ]

e ijk  = an error term reflecting the difference between the
sum of the preceding four terms and the value of
yijk ; this is the same random variable with the
same assumptions as the e ijk  in (2).

The model equation in (3) is called an overparameter-
ized model equation.  The a ’s, b ’s, and f ’s (but not the
e ’s) in the overparameterized model equation are called
the parameters of the equation.

Fisher and Mackenzie (1923) hinted at the idea of the
overparameterized model equation, and the idea was de-
veloped by Fisher’s colleagues, especially Allan and Wis-
hart (1930) and Yates (1933, 1934).

For the experiment summarized in table 5, the link
between the cell-means model equation and the over-
parameterized model equation is

m m a b fij i j ij= + + + .
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9.4  Using Model Equations to Make Predictions
An obvious use of model equations is to make pre-

dictions of the value of the response variable in new enti-
ties that are similar to the entities that participated in the
research project.  To make these predictions we first ob-
tain numerical estimates of the values of the parameters in
the appropriate model equation.

For example, suppose we have performed the experi-
ment summarized in table 5.  We can analyze the results
of the experiment to obtain numerical estimates for the m ,
the 2 a ’s, the 3 b ’s and the 2 ¥  3 = 6 f ’s shown in (3).
Then, given an entity for which we wish to make a pre-
diction, we determine the values of the predictor variables
for that entity, and then we substitute the estimated nu-
merical values of the parameters that correspond to the
values of the predictor variables into the right-hand side of
the model equation, and then (ignoring the error term be-
cause we don’t know its value) we add the substituted es-
timated numerical values of the parameters together to get
the predicted value of the response variable for the entity.

We usually determine the estimates of the values of
the parameters in a model equation by requiring that the
predictions we obtain when we use the estimates to help
us make predictions be as accurate as possible.  This
leads to the least-squares method under which we substi-
tute the values of the response variable and the predictor
variables from the results of a research project into certain
differential equations.  Then we (or a computer) solve the
equations to obtain estimated values of the parameters
such that the sum of the squared errors in the predictions
is minimized if we use the model equation together with
the estimated values of the parameters to make predictions
for all the values of the response variable obtained in the
research project.

9.5  The Estimates of the Values of the Parameters in
an Overparameterized Model Equation Are Not
Unique

Overparameterized model equations are so named be-
cause there are more parameters in such an equation than
there are non-empty cells in the group treatment table that
describes the associated research project.  For example, in
the experiment summarized in table 5 and (3), there are 2
¥  3 = 6 cells in the group treatment table.  But if we
count all the parameters in (3), we can see that there are 1
m  + 2 a ’s + 3 b ’s + (2 ¥  3) f ’s = 12 parameters in the
equation.  Since there are more parameters than cells, it
follows from linear algebra and calculus that it is impos-
sible, without further information, to write a set of least-
squares differential equations (employing data from a re-
search project that is consistent with the model equation)
that we can then solve to obtain unique estimates of the
values of the parameters.

(If an unsaturated model equation is used—see be-

low—then there are more parameters in the model equa-
tion than there are cells in the associated collapsed group
treatment table.)

Although we cannot write least-squares equations and
solve them for unique estimates of the values of the pa-
rameters in an overparameterized model equation, linear
algebra and calculus still allow us to write least-squares
equations and solve them for non-unique estimates of the
values of the parameters.  Of course, these non-unique es-
timates are not completely non-unique—that is, jointly
free to assume any values—or the estimates would be
meaningless.  Instead, these non-unique estimates are al-
ways constrained to be estimates of the values of the pa-
rameters that minimize the sum of the squared errors in
prediction of the value of the response variable across all
the values that were obtained in the research project.

9.6  Sigma Restrictions
It is generally easier to obtain the solution to a set of

equations that has a unique solution than to obtain a solu-
tion to a set of equations that has a non-unique solution.
Therefore, without loss of relevant generality, we can fa-
cilitate solving for estimates of the values of the parame-
ters in an overparameterized model equation by forcing a
unique solution on the estimates.  Scientists usually do
this by pre-defining certain restrictions (constraints) on the
estimates.  These restrictions are specified in terms of
equations that state reasonable relationships among the
estimates.  When the restriction equations are taken to-
gether with the original least-squares differential equa-
tions, the full set of equations has a unique solution that
we can easily obtain through matrix algebra with a com-
puter or hand calculator.  This gives us unique estimates
of the values of the parameters.

In view of the way they are written, the additional re-
strictions on the estimates of the values of the parameters
are called sigma restrictions (or sometimes called side
conditions).  The following four equations show the sigma
restrictions that scientists sometimes use for the over-
parameterized model equation shown in (3):
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Although the sigma restrictions give us “unique” es-
timates of the values of the parameters in the model equa-
tion, these estimates are unique only relative to the par-
ticular set of sigma restrictions that we have chosen.  And,
in general, if we choose another set of sigma restrictions
(there are infinitely many choices), we will obtain another
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“unique” set of estimates of the values of the parameters.

9.7  The Use of Overparameterized Model Equations
Because the estimates of the values of the parameters

in an overparameterized model equation are not unique,
scientists who are analyzing the data of an experiment
usually do not, as a practical matter, bother to obtain esti-
mates of the values of the parameters in the associated
overparameterized model equation.

(Scientists may, however, be interested in having the
computer supply the predicted value of the response vari-
able for each cell in the group treatment table, and these
predicted values, which are not always simple cell means,
can be readily computed from the estimated values of the
parameters.  Perhaps surprisingly, but of course ultimately
necessary for reasonableness, for a given model equation,
the predicted values of the response variable are inde-
pendent of the particular set of [linear] constraints [i.e.,
sigma restrictions] that we have chosen to facilitate solv-
ing for the estimates of the values of the parameters.)

Because overparameterized equations have “too
many” parameters, and because the estimated values of
the parameters are not unique, some scientists have com-
pletely abandoned overparameterized model equations.
However, overparameterized model equations are useful
in discussing experiments and ANOVA because:
• overparameterized model equations provide an easy-to-

grasp overview of the relationship between the response
variable and the predictor variables in an experiment,
including illustrating the roles that simple effects and
interactions play in the relationship

• the parameters in overparameterized model equations
can be used to describe what is being tested in statistical
tests, and are especially helpful in providing understand-
able descriptions of tests of interactions

• the parameters in overparameterized model equations
can help to characterize different possible forms of the
relationship between the response and predictor vari-
ables, as an aid to power calculations

• overparameterized model equations can help to charac-
terize the computation of sums of squares in ANOVA, as
discussed in sections 12 - 17.

As suggested by the last item in the preceding list,
some of the following discussion is in terms of over-
parameterized model equations with sigma restrictions.  I
use these equations because they facilitate understanding.
However, the conclusions I draw are independent of the
form of the model equation.  That is, in order to draw the
conclusions, we need not use sigma restrictions to force a
unique solution for the estimates of the values of the pa-
rameters.  (However, sigma restrictions are sometimes
necessary for another purpose, which I discuss in a techni-
cal note at the end of section 13.2.)  And we can draw the
same conclusions in this paper using an overparameterized

model equation without “forcing” sigma restrictions, or
using a cell-means model equation.

10.  RELATIONSHIPS AMONG PARAMETERS
10.1  Review of Relationships Between Variables

In section 6 I noted that one use of the statistical tests
in ANOVA is to help us analyze the results of an experi-
ment to see whether there is significant evidence of a re-
lationship between the response variable and the predictor
variables in the entities in the population under study.  For
example, for the experiment summarized in table 5 and in
(2) and (3), we can use ANOVA to help us determine
whether there is evidence of a relationship between the re-
sponse variable y and predictor variable A.  That is, we
can use ANOVA to test whether the expected value of y in
entities depends on the value of A.  In yet other words,
using the formal definition of a relationship given in sec-
tion 6.4, we can test whether

H0:    E(y) = E(y|A). (5)
And if our test provides sufficient evidence that H0 is

not satisfied, we can then conclude that there is a relation-
ship between y and A.  Let us call this use of a statistical
test in ANOVA testing for relationships between vari-
ables.

10.2  Relationships Among Parameters
A second use of the statistical tests in ANOVA is to

test whether subsets of the (population) parameters in the
model equation bear particular numerical relationships to
one another.  For example, for the experiment summarized
in table 5 and in (2) we may wish to use ANOVA to test
the hypothesis that the following relationship exists
among the parameters of (2):

¢ "ÂH b iijj0: /m equal (6)

where:
b = the number of different values of predictor variable B

appearing in the experiment.
To understand ¢H0  it is helpful  to arrange the popu-

lation means for all the cells in the group treatment table
in a two-dimensional array, with the values of predictor
variable A indexing the rows and the values of predictor
variable B indexing the columns, as in array 1.

(The a and b in the array are the number of different
values appearing in the experiment of predictor variables
A and B respectively.)

The rightmost column in the array contains the mean
of the cell means for each row.  That is

m mi ijj
b∑ = Â / .

Thus in terms of array 1, the hypothesis ¢H0  states
that if we compute the mean of the population cell means
for each row in the array, then these row means will all be
equal to one another.
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procedure of testing for relationships among parameters
has been discussed often by statisticians, interest in this
procedure among actual empirical scientists—e.g., medi-
cal scientists—is less common because the concept of a
relationship among the parameters of a model equation is
somewhat abstract, and is therefore (except in the simplest
cases) difficult for some scientists to understand.

On the other hand, for the reasons discussed in section
6.8, most scientists usually are interested in testing for
relationships between variables.  In that situation, if a sci-
entist uses a test of a hypothesis of a relationship among
parameters (such as ¢H0 ) to test a hypothesis of a relation-
ship between variables (such as H0), this approach, al-
though valid, is less efficient because it leads to two diffi-
culties:

The first difficulty is that if we use a test of a rela-
tionship among parameters to test for evidence of a rela-
tionship between variables, then in order to understand
what is being tested, we must understand the concept of a
relationship among the parameters of the model equation.
However, as noted above, the concept of a relationship
among the parameters of the model equation (whether
cell-means or overparameterized) is somewhat difficult to
understand, as any statistician who has tried to explain this
concept to a client will perhaps agree.

Furthermore, if we use a test of a relationship among
parameters to test for evidence of a relationship between
variables, we must understand how the concept of a rela-
tionship among parameters relates to the concept of a re-
lationship between variables, another somewhat difficult
task.

On the other hand, if we simply concentrate on tests
of relationships between variables, we (and our clients)
need only understand the concept of a relationship be-
tween variables, which is relatively easy to understand,
especially if we view the concept in terms of the value of
the response variable depending on the values of the rele-
vant predictor variable(s).

The second difficulty with using a test of a hypothesis
of a relationship among parameters (e.g., ¢H0 ) to test a
hypothesis of a relationship between variables (e.g., H0) is
that this approach may confuse us into thinking that only a
subset of the valid statistical tests are valid.  And selecting
statistical tests from this subset will lead us to use sub-op-
timal statistical tests, as I discuss in sections 14 through
18.

(In sections 6 and 10 I discussed two uses of the
ANOVA statistical tests.  Although ANOVA is often em-
ployed in these uses, there are other uses as well.
Hoaglin, Mosteller, and Tukey [1991 ch. 2] discuss an-
other classification of the uses of ANOVA.)

11.  SUMMARY AND PREVIEW
In sections 1 through 10 of this paper I discussed two

ARRAY 1

Layout of the Population Cells Means
For the Experiment Summarized in Table 5

To Facilitate Understanding ¢H0

Level of B
Row

 Mean

1 ... b
of Cell
Means

Level
1 m11 ... m1b m1∑

of  M M ... M M

A
a m a1 ... m ab m a∑

Because ¢H0  is stated in terms of the parameters of
the model equation, let us call the use of ANOVA exem-
plified in the test of ¢H0  testing for relationships among
parameters.

10.3  Are Relationships Among Parameters the Same
as Relationships Between Variables?

An obvious question is whether H0 and ¢H0  are the
same hypothesis.  It turns out that although they are re-
lated, they are not the same because there are states of af-
fairs in which H0 is rejected (i.e., there is a relationship
between y and A—specifically a particular type of inter-
action relationship) but ¢H0  is satisfied.  I describe such a
state of affairs in the candy sales example in section 6 of
appendix B.  (On the other hand, whenever there is no re-
lationship between y and A—i.e., H0 is true— ¢H0  is also
always true.)

10.4  Why Scientists Test for Relationships Among Pa-
rameters

There are two reasons why a scientist may wish to
perform a test for a relationship among the parameters of a
model equation:
1. the scientist may be interested in testing for the exis-

tence of a relationship among the parameters in its own
right

2. the scientist may be using the test of the relationship
among parameters as a test of whether there is a rela-
tionship between the response variable and one or
more of the predictor variables in the research project.
That is, the scientist may use a test of a relationship
among parameters as a test of a relationship between
variables.
Testing for relationships among parameters in their

own right is a valid research interest, which I briefly dis-
cuss further in sections 14 and 15.  However, although the
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uses of the ANOVA statistical tests, namely:
• to test for relationships between variables (section 6) and
• to test for relationships among the parameters of the

model equation (section 10).
I noted that scientists are often interested in testing for
relationships between variables.  In sections 12 through 18
I will discuss two methods of computing ANOVA sums of
squares and will evaluate the two methods of computing
sums of squares for fulfilling the two uses of the ANOVA
statistical tests.

12.  RESIDUAL SUMS OF SQUARES
In sections 9.3 - 9.6 of this paper I noted that for any

overparameterized model equation, and for the results of
any research project that is consistent with the model
equation and that has no empty cells in the group treat-
ment table, we can (using the method of least squares and
possibly using the sigma restrictions) “fit” the equation to
the results of the research project and thereby obtain esti-
mates of the values of the parameters in the equation.

For example, suppose we have performed the 2 ¥  3
experiment summarized in table 5.  In section 9.3 I noted
that this experiment has the following overparameterized
model equation:

yijk i j ij ijk= + + + +m a b f e . (3)

In section 9.4 I noted that we can use the method of least
squares to fit (3) to the results of the experiment and
thereby obtain estimates of the values of the m , a ’s,
b ’s, and f ’s in the equation for the population of entities
we are studying.

I also noted that once we have obtained estimates of
the values of the parameters, we can then substitute the
appropriate estimates into the model equation to predict
the value of the response variable for each entity in each
cell in the group treatment table in the research project.
(Of course, for any given cell in the group treatment table,
the predicted value for all the entities in the cell is the
same.)

Using the foregoing ideas, let us consider a definition
of the concept of a residual sum of squares:

Definition:  For any research project in which the re-
sponse variable has numeric values, the residual sum
of squares of a model equation in the research project
is the sum across all the values of the response vari-
able in the research project of the squared deviation
of the value predicted by the model equation for an
entity from the actual measured value of the response
variable in the entity.  That is, for any model equation
in a research project, the residual sum of squares is

SSr measured predicted= -Â( ) .2

It is, of course, the residual sum of squares that the

least-squares procedure minimizes in order to determine
the estimates of the values of the parameters.  I use the
concept of the residual sum of squares of a model equa-
tion shortly.

13.  TWO METHODS OF COMPUTING
ANOVA SUMS OF SQUARES

A critical step in computing the p-values in an
ANOVA is to compute different “sums of squares” from
the results of the experiment.  (Please distinguish ANOVA
sums of squares from the closely related residual sums of
squares discussed in the preceding section.)  Various
methods of computing ANOVA sums of squares are avail-
able, two of which I discuss in this section.

We can characterize both methods of computing
ANOVA sums of squares in terms of the difference be-
tween the residual sums of squares of two model equations
(Yates 1934:63, Scheffé 1959, Searle 1971).  I shall call
these equations the two generating equations for an
ANOVA sum of squares.

13.1  The HTO Method of Computing Sums of Squares
One method of computing ANOVA sums of squares

is to have Higher-level Terms Omitted from the two gen-
erating model equations (HTO).  For example, if we have
performed the experiment summarized in table 5, then un-
der the HTO method we can compute the ANOVA sum of
squares for the A simple relationship (main effect) by first
fitting (separately) the following two new model equations
to the data:

yijk j ijk= + +m b e       (7)

yijk i j ijk= + + +m a b e (8)

where in each equation (if the associated term is present):

a iiÂ = 0

b jjÂ = 0.

Then under the HTO method, the sum of squares for
the A simple relationship is the residual sum of squares for
(7) minus the residual sum of squares for (8).  [This dif-
ference will always be non-negative because (8) has an
additional term, and thus will always provide at least as
close a fit to the data as (7).]  Thus (7) and (8) are the
generating model equations for the HTO sum of squares
for the A simple relationship for the experiment.

By examining (7) and (8) we can see that under the
HTO method of computing sums of squares we are testing
the effect on y of a change in the value of variable A by
studying the reduction in the residual sum of squares if we
include a term for variable A in the model equation, using
a model equation with no interaction term.  It is custom-
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ary to say that the interaction term is a higher-level term
than the A term because the interaction term refers to two
of the predictor variables (i.e., A and B) while the A term
refers to only one.  I use the name HTO to reflect the fact
that (although terms at the same level are included)
Higher-level Terms are Omitted from the two generating
model equations.

Generating equations (7) and (8) are called unsatu-
rated model equations because not all the possible terms
in the standard overparameterized model equation for the
experiment [i.e., equation (3)] are included in the equa-
tions.  We can always use the least-squares procedure to
obtain estimates of the values of the parameters in an un-
saturated overparameterized model equation.  If we wish,
we can use sigma restrictions to facilitate the solution.

The procedure of computing an HTO sum of squares
by computing the difference in the residual sums of
squares of two generating model equations illustrates what
is being computed when we compute the sum of squares.
There are, of course, computationally or algebraically
more efficient (but conceptually less transparent) proce-
dures for performing the same computation as discussed
briefly in the second part of appendix C.  For detailed
coverage of the methods, see the landmark discussions by
Hocking (1985) and Searle (1987).

13.2  The HTI Method of Computing Sums of Squares
A second method of computing ANOVA sums of

squares is to have Higher-level Terms Included in the two
generating model equations (HTI).  For example, if we
have performed the experiment summarized in table 5,
then under the HTI method we can compute the ANOVA
sum of squares for the A simple relationship by first fitting
(separately) the following two model equations to the
data:

yijk j ij ijk= + + +m b f e (9)

yijk i j ij ijk= + + + +m a b f e (10)

where we use the sigma restrictions from (4).
Then under the HTI method, the sum of squares for

the A simple relationship is the residual sum of squares for
(9) minus the residual sum of squares for (10).

By examining (9) and (10) we can see that under the
HTI method of computing sums of squares we are testing
the effect on y of a change in the value of variable A by
studying the reduction in the residual sum of squares if we
include a term for variable A in the model equation, but
this time we are using model equations with an interaction
term.  I use the name HTI to reflect the fact that (in addi-
tion to including terms at the same level) Higher-level
Terms are Included in the two generating model equa-
tions.

[On a technical matter, in unsaturated generating

model equations, in addition to allowing us to obtain
unique estimates of the value of the parameters, some of
the sigma restrictions play a second role:  they prevent the
interaction terms in the model equation from wrongly ac-
counting for variation in the values of the response vari-
able that should be accounted for by lower-level terms or,
as in (9), that should not be accounted for at all.  This ap-
proach, which is entailed by the principle that each inter-
action term in a model equation should be independent of
the effects of all of the other terms, solves a problem
identified by Searle (1971, 1987:339-340) and Nelder
(1977:50) concerning certain ANOVA sums of squares
that would undesirably turn out to be zero.]

13.3  General Comments
I have illustrated the HTO and HTI methods of com-

puting ANOVA sums of squares in terms of an experiment
with two predictor variables.  The distinction between the
two methods can be generalized to include experiments
with any number of predictor variables by noting that we
can view each method in terms of fitting two generating
model equations to the data:  one equation containing the
term for the effect being tested, and the other equation
lacking the term for the effect being tested.  And the de-
sired sum of squares is the difference between the residual
sums of squares of the two generating equations.  In com-
puting the HTO sums of squares, Higher-level Terms are
Omitted from the two generating equations although (with
one obvious exception) all the terms at the same level as,
and at lower levels (if any) than, the effect being tested
are included.  On the other hand, in computing the HTI
sums of squares, all the Higher-level Terms are Included
in the two generating equations along with all the terms at
the same and lower levels (with the same one exception).

The HTO and HTI methods of computing ANOVA
sums of squares generally yield numerically different val-
ues from each other in an unbalanced experiment.  How-
ever, they always yield identical values in a balanced ex-
periment.  Furthermore, in a balanced experiment the two
methods yield sums of squares that are identical to the
sums of squares obtained through the standard ANOVA
techniques for balanced experiments.

In a fully crossed unbalanced experiment with two or
more predictor variables (and with no empty cells), it can
be shown that the HTO and HTI sums of squares for the
highest-level interaction are always identical.  Similarly,
in an unbalanced experiment with only a single predictor
variable, it can be shown that the HTO and HTI sums of
squares for the simple relationship are always identical.

Table 7 shows the names that twelve articles and
eight statistical computer programs use for the HTO and
HTI methods of computing ANOVA sums of squares in
experiments with two predictor variables.
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TABLE 7

Names Used by Twelve Articles and Eight Computer Programs
for Two Methods of Computing Sums of Squares

in Two-Way Unbalanced ANOVA
                  _________________________________________________________________________________

Reference HTO HTI
                  _________________________________________________________________________________
                  

ARTICLES

Yates (1934) fitting constants weighted squares of means

Overall and Spiegel (1969) method 2 method 1

Burdick et al (1974) method 2 method 1

Kutner (1974) hypotheses F and G hypotheses A and B

Hocking and Speed (1975) hypotheses HA** and HB** hypotheses HA and HB

Speed and Hocking (1976) hypotheses 5 and 6 hypotheses 1 and 2

Herr and Gaebelein (1978) EAD (method 3) STP (method 1)

Speed, Hocking, and Hackney (1978) hypotheses 3 and 7 hypotheses 1 and 5

Burdick (1979) hypothesis 3 hypothesis 1

Elliott and Woodward (1986) hypotheses 3 and 6 hypotheses 1 and 2

Milligan et al (1987) hypothesis H3 and H7 hypothesis H1 and H5

Singh and Singh (1989) hypotheses H5 and H6 hypotheses H1 and H2

                  COMPUTER PROGRAMS

SAS GLM (SAS Institute 1990:109) Type II Type III

SPSS ANOVA (SPSS 1990:64) method = experimental method = unique

SPSS MANOVA (SPSS 1990:377) - unique method

BMDP 4V (Dixon 1990a:1155) weights = sizes weights = equal

BMDP 2V (Dixon 1990b:489) - default method

SYSTAT MGLH (Wilkinson 1990:140) - default method

MINITAB GLM (Minitab 1989:8-27) - default method

Data Desk Linear Models (Velleman n.d.:39) - Partial (Type 3)
                  _________________________________________________________________________________

Table 7 covers only two-way experiments.  For three-
way and higher experiments, the SPSS ANOVA EX-
PERIMENTAL sums of squares are identical to HTO
sums of squares.  However, for three-way and higher ex-
periments, although some SAS type II sums of squares and
some BMDP4V WEIGHTS = SIZES sums of squares are
identical to HTO sums of squares, others are not.  (Nor are
the SAS type II sums of squares and the corresponding
BMDP4V WEIGHTS = SIZES sums of squares always
identical to each other.)  Davidson and Toporek (1979:21)
compare sums of squares from the three statistical pack-
ages for two- and three-way experiments.  In their com-
parison the SPSS-D (for “default”) sums of squares are
identical to what are now called SPSS ANOVA EX-
PERIMENTAL sums of squares and URWAS is the old

name for the computer program that is now called
BMDP4V.

If you need to compute an HTO (or certain other
types of) sum of squares, but if the available statistical
package cannot do the computation directly, then (with
most packages) you can do the computation indirectly by
using the following steps for each sum of squares you
wish to compute:
• Specify to the linear regression program in the package

the first of the two generating model equations for the
sum of squares and then use the regression program to
compute the residual sum of squares for that model
equation.  (Use full-rank dummy-variable specifica-
tion—which has the same effect as imposing sigma re-
strictions—in this and the next step in order to bypass
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the problem discussed in the last paragraph of section
13.2.)

• Specify to the regression program the second of the two
generating equations and then use the program to com-
pute the residual sum of squares for that equation.

• Subtract the smaller residual sum of squares from the
larger to yield the associated ANOVA sum of squares.

Alternatively, you can obtain the same result using
the matrix arithmetic procedure given in the second part
of appendix C.

14.  THE HTO METHOD IS GENERALLY
INAPPROPRIATE WHEN TESTING FOR

RELATIONSHIPS AMONG PARAMETERS
I have now discussed:

• using ANOVA to test for relationships between variables
and using ANOVA to test for relationships among the
parameters of the model equation (sections 6 and 10 re-
spectively)

• the HTO and HTI methods of computing ANOVA sums
of squares (section 13).

In this and the next three sections I address the ques-
tions of which of the HTO and HTI methods is better for
testing for relationships between variables, and which is
better for testing for relationships among parameters.  I
begin by considering the HTO method and testing for re-
lationships among parameters.

Several authors have correctly noted that the HTO
method of computing sums of squares is generally not ap-
propriate if we wish to test for relationships among pa-
rameters (Carlson and Timm 1974, Kutner 1974, Speed,
Hocking, and Hackney 1978, Hocking, Speed, and Cole-
man 1980, Searle 1987).  These authors have shown that,
in general, under the testing for relationships among pa-
rameters approach, the HTO method does not test mean-
ingful, useful, or interesting hypotheses.

For example, consider the two-way ANOVA for the
experiment summarized in table 5.  Searle (1987:115)
notes that the HTO sum of squares for the A simple rela-
tionship (main effect) in this experiment enables us to test
whether the following relationship exists among the pa-
rameters of (2), the associated cell-means model equation:

n
n n

n
iij ijj

ij tj

j
tjtj

m mÂ ÂÂ= "
∑

(11)

where:
nij = number of entities in the ij cell in the group treat-

ment table and

n nj iji∑ = Â .

Searle also notes (1987:333) that the same HTO sum
of squares for the A simple relationship enables us to test

whether the following relationship exists among the pa-
rameters of (3), the associated overparameterized model
equation:

n
n n

n
iij i ijj

ij tj

j
t tjtj

( ) ( ) .a f a f+ = + "Â ÂÂ
∑

(12)

The important question is whether either of these tests
of relationships among the parameters in an unbalanced
experiment is of any use.  And, as the authors cited above
have noted, scientists are virtually never specifically inter-
ested in testing whether the (equivalent but somewhat ar-
cane) relationships shown in (11) and (12) exist among the
parameters of the model equation.  This example illus-
trates why the HTO method of computing sums of squares
is generally inappropriate if our goal is to test for relation-
ships among parameters.

15.  BUT THE HTI METHOD IS APPROPRIATE
WHEN TESTING FOR RELATIONSHIPS

AMONG PARAMETERS
On the other hand, Searle (1987:335) notes that the

HTI test for the A simple relationship (main effect) tests
whether the following relationship (discussed earlier in
section 10.2) exists among parameters of the cell-means
model equation:

¢ "ÂH b iijj0: / .m equal (6)

Similarly, Searle (1987:335) notes that the same HTI
test for the A simple relationship tests whether the follow-
ing relationship exists among the parameters of the over-
parameterized model equation:

a fi ijj
b i+ "Â / .equal (13)

If the sigma restrictions are imposed, the relationship
in (13) reduces to:

a i i= "0 . (14)

The relationships shown in (6), (13), and (14) are
relatively easy to understand and are relationships among
parameters that scientists are sometimes interested in
testing.

Because statisticians have endorsed the HTI method
of computing ANOVA sums of squares (because the as-
sociated statistical tests test hypotheses of interest for re-
lationships among parameters), and because many scien-
tists are not familiar with the facts discussed below, many
scientists choose the HTI method of computing sums of
squares in unbalanced ANOVA even when they are not
interested in testing for relationships among parameters,
but are instead actually interested in testing for relation-
ships between variables.  Unfortunately, as I shall discuss
below, this choice is sub-optimal.
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16.  BOTH THE HTO AND HTI METHODS
ARE APPROPRIATE WHEN TESTING

FOR RELATIONSHIPS BETWEEN
THE RESPONSE VARIABLE AND

THE PREDICTOR VARIABLES
In the preceding two sections I reviewed the well-

known conclusions that the HTO sums of squares are gen-
erally not appropriate if our goal is to test for relationships
among parameters while the HTI sums of squares are gen-
erally appropriate for that goal.  That review was included
to help readers contrast its conclusions with the main ar-
gument of this paper.  Let me now return to the main ar-
gument and evaluate the HTO and HTI methods of com-
puting sums of squares if our goal is to test for relation-
ships between the response variable and the predictor
variables in the population of entities under study in an
experiment.

I begin with a definition of a valid statistical test for a
relationship between variables:

Definition:  In situations in which the associated un-
derlying assumptions are satisfied, an F-ratio-based
statistical test for a relationship between variables is a
valid test if:
• in the absence of the indicated relationship the F-

ratio yielded by the test can be shown to have a
central F-distribution with known degrees of free-
dom and

• in the presence of the indicated relationship the ex-
pected value of the numerator of the F-ratio can be
shown to be greater than the expected value of the
denominator.

The definition implies that if an ANOVA statistical
test for a relationship between variables is valid (and if the
underlying assumptions of ANOVA are adequately satis-
fied), we can then be confident that the p-values that are
yielded by the test are correct estimates of the probabili-
ties that they purport to estimate.  Obviously, it is impor-
tant that ANOVA statistical tests for relationships between
variables be valid.

Let us now consider a theorem that shows that the
HTO sums of squares provide valid statistical tests for re-
lationships between variables in certain general situations:

Theorem 1 (proved in appendix A):  Consider an n-
way fully crossed research project (where n > 1) with
no empty cells in the group treatment table.  Suppose
that the underlying assumptions of ANOVA are satis-
fied.  Select any q of the predictor variables where 1
£  q < n.  Suppose that there are no (q + 1)-way or
higher-way population interactions involving all of
the q selected predictor variables (it being only neces-
sary to consider variables measured in the research
project).  Then the HTO statistical test that is associ-
ated with the q predictor variables is a valid test if we

wish to test for evidence of a q-way population rela-
tionship between the q selected predictor variables
with respect to their joint relationship to the response
variable.  (That is, if q > 1, the test is a valid test for
the presence of the q-way interaction, and if q = 1, the
test is a valid test for the presence of the simple rela-
tionship.)  Similarly, the n-way HTO test is a valid
test if we wish to test for evidence of an n-way popu-
lation interaction between all of the predictor vari-
ables with respect to their joint relationship to the re-
sponse variable.

Put simply, theorem 1 implies that the HTO sums of
squares are (with one qualification, and if the underlying
assumptions are adequately satisfied) valid for use in sta-
tistical tests if our purpose is to test the results of a re-
search project for evidence of a population relationship
between the response variable and the predictor variables.

Theorem 1 can also be proven for statistical tests that
are based on the HTI sums of squares.

Thus both the HTO and HTI sums of squares are ap-
propriate for testing for population relationships between
the response variable and the predictor variables in an ex-
periment, at least in the absence of associated higher-level
interactions.

I discuss why higher-level interactions usually do not
create problems when scientists are testing for relation-
ships between variables in appendix B.

17.  THE HTO METHOD IS GENERALLY MORE
POWERFUL THAN THE HTI METHOD

WHEN TESTING FOR
RELATIONSHIPS BETWEEN VARIABLES

Definition:  If
• we apply an ANOVA statistical test of a relation-

ship between variables to the results of a research
project and

• the underlying assumptions of ANOVA are ade-
quately satisfied and

• (most importantly) the p-value that is yielded by the
test is less than or equal to the critical p-value that
we have chosen for the test (i.e., usually .05 or .01),

then we say that the statistical test provides reason-
able evidence that the relationship exists.

Using the concept of providing reasonable evidence
that a relationship exists, let us now define the power of a
statistical test.

Definition:  For a given form of a relationship be-
tween variables, the power of a statistical test of the
relationship is the fraction of the times that the test is
performed (each time with a fresh random sample
from the population of interest) that the test will pro-
vide reasonable evidence that the relationship exists,
given that the relationship has the specified form.
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Within the limits of time and cost constraints,
scientists generally prefer to use statistical tests that (when
operating in the vicinity of the expected form of the rela-
tionship) have the highest possible power because such
tests are more likely to discover the sought-after relation-
ship, if it exists.  Thus having noted that both the HTO
and HTI sums of squares are appropriate for testing for
relationships between the response variable and the pre-
dictor variables, an important question is:  Of the HTO
and HTI methods of computing sums of squares, which
method yields more powerful statistical tests for detecting
relationships between variables?

Theorem 2 (proved in appendix C):  Consider an n-
way fully crossed research project (where n > 1) with
no empty cells in the group treatment table.  Suppose
that the underlying assumptions of ANOVA are satis-
fied.  Select any q of the predictor variables  where 1
£  q < n.  Suppose that there are no (q + 1)-way or
higher-way population interactions among the predic-
tor variables in the research project with respect to
their joint relationship to the response variable.  Then
if a q-way population interaction (or, if q = 1, a sim-
ple relationship) exists between the selected predictor
variables with respect to their joint (its) relationship
to the response variable, the statistical test (using
within-cell error) for the q-way interaction (or, if q =
1, for the simple relationship) based on the HTO sum
of squares is at least as powerful for detecting the in-
teraction (simple relationship) as the statistical test
(also using within-cell error) based on the HTI sum of
squares.

Theorem 2 implies that an HTO statistical test is, un-
der certain general conditions, at least as powerful for de-
tecting relationships between variables as the associated
HTI statistical test.  However, because the two tests have
exactly the same power only when special conditions ob-
tain, usually in unbalanced experiments the HTO test is
more powerful than the HTI test.  Of course, the size of
the difference in power between the two tests depends on
the pattern of imbalance in the experiment.  (Littell and
Lynch [1983] examine the simplest case.)  Furthermore,
often the difference in power will be small.  However,
given the possible high social cost of a failure to discover
a useful existing relationship between variables, the dif-
ference in power is large enough to be a consideration
when deciding which method of computing sums of
squares to use when testing for relationships between vari-
ables.

You can easily empirically see the validity of theorem
2 by analyzing several sets of unbalanced experimental
data with an unbalanced ANOVA computer program that
can compute both types of sums of squares.  (Of course,
for each experiment there must be no empty cells in the

group treatment table, the data must contain evidence of a
relationship, and the experiment must have two or more
predictor variables.)  Except for the highest-level interac-
tion (for which the HTO and HTI sums of squares are
identical), whenever an effect is significant, the HTO sum
of squares for the statistical test will usually (but not al-
ways) be larger than the corresponding HTI sum of
squares, and thus the p-value for the HTO sum of squares
will usually be smaller than the p-value for the HTI sum
of squares, which indirectly implies that statistical tests
based on the HTO method of computing sums of squares
are generally more powerful.

Theorem 2 implies that statistical tests based on the
HTO method of computing sums of squares are preferred
to statistical tests based on the HTI method in ANOVA of
unbalanced experiments with no empty cells when there
are no higher-level interactions if (as is often the case) our
goal is to test for relationships between the response vari-
able and the predictor variables.  That is the main point of
this paper.

I discuss an extension to the HTO approach for three-
way and higher experiments in appendix D and I discuss
other approaches to ANOVA statistical tests in appendix
E.

18.  SUMMARY
Entities, properties of entities, and relationships be-

tween properties of entities are fundamental concepts of
human thought.  In science, properties are roughly syn-
onymous with variables.  Relationships between variables
are of central concern to scientists.

Two uses of the ANOVA statistical tests are:
• to test for population relationships between the response

variable and the predictor variables in an experiment
• to test for population relationships among the parameters

of the model equation in an experiment.
Two popular approaches for computing ANOVA

sums of squares are the HTO approach or the HTI ap-
proach.

If we wish to test for relationships between the re-
sponse variable and the predictor variables in an experi-
ment, both the HTO and HTI approaches are appropriate
(valid).

Main point:  If we wish to use ANOVA to test for
evidence of relationships between variables in an experi-
ment with no empty cells, statistical tests based on the
HTO approach are preferred to statistical tests based on
the HTI approach because the former tests are generally
slightly more powerful.

APPENDIX A:  PROOF OF THEOREM 1
The following proof is a generalization of the first

part of a theorem proved in the two-way case by Burdick
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and Herr (1980:239):
As exemplified by Searle (1987), for any given HTO

ANOVA statistical test, the hypothesis being tested can be
shown in terms of one or more expressions that contain
only terms in parameters of the overparameterized model
equation.  Furthermore, for a given HTO test, these ex-
pressions contain only terms in the parameters associated
with (a) the effect being tested and (b) the associated
higher-level interactions.  For example, see (12).

(*) For any q-way effect in an overparameterized
model equation (i.e., an effect for a particular interaction
or an effect for a particular simple relationship), if:
• there are no associated higher-level interactions in the

population between the predictor variable(s) associated
with the effect and other predictor variables in the re-
search project with respect to their joint relationship to
the response variable and

• there is no associated q-way relationship in the popula-
tion between the predictor variable(s) associated with
the effect with respect to their (its) joint relationship to
the response variable

then the parameters in the overparameterized model equa-
tion that are associated with the effect will be all identical.
(This can be derived from the definition of interactive and
simple relationships between variables and from the
definition of an overparameterized model equation.)

If the parameters associated with a higher-level inter-
action in an expression of a hypothesis being tested are all
identical, we can remove any terms that are associated
with that interaction from the expression of the hypothesis
in order to obtain a more succinct statement of the hy-
pothesis.  (This can be seen by examining the  expressions
of the hypothesis being tested such as (12) and noting that
if the f ij ’s are all replaced by a constant k, then the corre-
sponding statement of the hypothesis with the k’s omitted
can be derived from the statement with the k’s included
through some minor algebra.)

If we remove all the higher-level interaction terms
from the expressions of a hypothesis, examination of the
resulting expressions reveals that the test is a test (using a
weighting to reflect the relative accuracy of the estimated
values of the parameters) of whether all the parameters as-
sociated with the effect in question are identical.  (This
can be seen in (12) by noting that if the f ' s  are all re-
moved, and if the a ’s in the i expressions are all set
identical to some value k, then the expressions in (12) all
become tautologically true.)

But from (*) if there is no associated higher-level in-
teraction and no q-way relationship, the parameters asso-
ciated with the effect will all be identical.

Thus if there is no associated population higher-level
interaction and no population q-way relationship, the ex-
pression of the hypothesis associated with the HTO sum of
squares will be satisfied, and thus (if the underlying as-

sumptions of ANOVA are satisfied) the numerator mean
square and the denominator mean square in the F-ratio
will have the same expected value.  Thus if there is no as-
sociated population higher-level interaction and no popu-
lation q-way relationship, (and if the underlying assump-
tions of ANOVA are satisfied), the HTO F-ratio will have
a central F-distribution.  And thus the HTO statistical test
satisfies the first part of the definition of a valid ANOVA
statistical test.

On the other hand, if there is a visible (within the
context of the experiment) population relationship be-
tween the predictor variable(s) associated with the effect
of interest with respect to their joint (its) relationship to
the response variable (but there is no associated higher-
level interaction), then the parameters associated with the
effect will not be all identical and thus, because the term
associated with those non-identical parameters is omitted,
the model equation with the omitted term [e.g., (7)] will
have an inflated residual sum of squares.  Thus the effect
mean square based on the difference of the residual sums
of squares of the two model equations [e.g., (7) and (8)]
will have an expected value that is greater than the error
mean square.  Thus the expected value of the numerator of
the HTO F-ratio will be greater than the expected value of
the denominator.  And thus the HTO statistical test satis-
fies the second part of the definition of a valid ANOVA
statistical test.

And thus the theorem is proved.

APPENDIX B:  HIGHER-LEVEL INTERACTIONS
In this appendix I discuss why the qualification about

higher-level interactions given at the end of section 16
usually does not create problems when scientists are test-
ing for relationships between variables.

B.1  A Reasonable Approach to ANOVA
Scientists who are testing for relationships between

variables usually use ANOVA to help them answer the
following two questions:
• As x1 changes in an entity, can we also expect y to

change in the entity?  That is, is there a relationship
between x1 and y?

• Given that there is a relationship between x1 and y in
entities, does the profile of the relationship depend on
the level of x2, x3, ... in the entities?  That is, is the rela-
tionship an interactive relationship?

A reasonable approach to answering these questions is
(after performing an appropriate experiment) to examine
the components (rows) in the ANOVA table beginning
with the highest-level interaction and working down to the
simple relationships (main effects).  As we work down, if
we find a significant component, we can tentatively con-
clude that there is a relationship between (a) the response
variable and (b) the set of one or more predictor variables
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that are associated with the component.  (Of course, if p
predictor variables are associated with a significant com-
ponent, where p > 1, we can tentatively conclude that
there is a p-way interaction between the p predictor vari-
ables with respect to their joint relationship to the re-
sponse variable.)

Let us use the term associated lower-level compo-
nents to refer to components in an ANOVA table that are
associated only with predictor variables that are all in-
volved in a particular higher-level interaction.  For exam-
ple, consider a four-way ANOVA in which the predictor
variables are A, B, C, and D, and consider the A ¥  B ¥  C
interaction.  Then the associated lower-level components
for this interaction are all the components in the ANOVA
table that contain one or two of variables A, B, and C.
There are six such components, namely A, B, and C, and A
¥  B, A ¥  C, and B ¥  C.

After finding a significant component in an ANOVA
table, we can continue (in the order mentioned above)
checking components in the table.  However, as suggested
by Appelbaum and Cramer (1974:340), Aitkin (1978:200),
and Cox (1984:16) if we are seeking evidence of relation-
ships between variables, once we have found a significant
interaction component we are usually not interested in any
of the associated lower-level components.  We are usually
not interested in these components because the higher-
level interaction will have already told us that there is a
relationship between the response variable and the asso-
ciated predictor variables, and the relationship is interac-
tive at the indicated level.  And if we are seeking evidence
of relationships between variables, checking the associ-
ated lower-level components will usually give us no fur-
ther useful information (beyond giving us more evidence
that the relationship exists).

Some writers disagree with the preceding sentence.
Sections B.2 - B.5 address arguments that have been made
in favor of checking associated lower-level components
for statistical significance in the presence of a significant
higher-level interaction.

B.2  Lower-Level Relationships Cannot Be Present in
the Presence of a Higher-Level Associated Interaction

One argument in favor of checking the associated
lower-level components is that such checking enables us
to see whether simple relationships or lower-level interac-
tions exist between the response variable and the associ-
ated predictor variables.  However, if there is an interac-
tion between two or more predictor variables with respect
to their joint relationship to the response variable, then
(for reasons given below) a simple relationship between
the response variable and any of the predictor variables
involved in the interaction cannot exist.  Similarly, if there
is an interaction between p predictor variables with re-
spect to their joint relationship to the response variable

where p > 2, then a lower-level interaction between two or
more of the predictor variables involved in the interaction
also cannot exist.  Thus if there is a significant interaction,
checking the associated lower-level components of the
interaction does not allow us to see whether simple rela-
tionships or lower-level interactions exist between the re-
sponse variable and the associated predictor variables be-
cause (for reasons given below) such simple relationships
and interactions cannot exist.

The conclusion of the preceding paragraph is derived
from the definition of a simple relationship between vari-
ables and from the definition of an interaction, which are
both given in section 6.10.  To help understand the con-
clusion, let us revisit the definitions.  A critical feature of
the definitions is that each definition contains a clause that
limits each predictor variable to being involved in only
one type of relationship (or no relationship) with the re-
sponse variable at a time.  That is, a particular predictor
variable can only be involved in a simple relationship or
in a particular single interaction at a time, and another re-
lationship between that predictor variable and the response
variable cannot exist.

The fact that a given predictor variable can only bear
a single type of relationship to the response variable at a
time is, of course, not an empirical fact, but instead sim-
ply results from a definition.  Thus we could easily choose
some other definition for a simple relationship or an inter-
action.  In particular, we could choose a definition that
allows simple relationships and interactions to exist even
in the presence of associated higher-level interactions.

However, the requirement of the definitions that a
predictor variable can only bear one type of relationship to
the response variable at a time is helpful in formulating an
easily-grasped concept of a relationship between variables
because the requirement simplifies the concept of a rela-
tionship without limiting its generality.

In particular, it is important to recognize that the
definitions given in section 6.10 of simple and interactive
relationships between variables do not prevent us from
having terms for both an interaction effect and an associ-
ated lower-level effect in a model equation at the same
time, if we wish.  But even when we include terms of
various levels in a model equation, it is still perhaps sim-
plest to view the relationship in terms of the highest-level
interaction—as a single high-level interaction between all
of the associated predictor variables with respect to their
joint relationship to the response variable, rather than as a
combination of two or more different relationships.  From
this point of view, once we decide that there is an interac-
tion, there is no need to examine associated lower-level
components to see if there is any evidence that the asso-
ciated lower-level relationships exist because (by defini-
tion) they cannot.
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B.3  The Final Form of the Model Equation:  Practical
Considerations

If we are using an overparameterized model equation,
another argument in favor of testing the associated lower-
level components for significance in the presence of a
significant higher-level interaction is that such tests tell us
which terms to include in the final form of the model
equation.  However, knowledge of whether we need to
include a simple-effect (or lower-level interaction) term in
a model equation is often of little practical use because
often in performing ANOVA we are not interested in
knowing which terms are required in the final form of the
model equation, and we are only interested in knowing
which relationships, if any, exist between the response
variable and the predictor variables.

We are usually not interested in the final form of the
model equation because the model equations used in
ANOVA are usually of little use beyond providing a way
of understanding what is being tested in a statistical test,
and for enabling analysis of the power of statistical tests,
and for providing an easily-understood way of describing
the computation of sums of squares.  That is, ANOVA
model equations are not often used in substantive areas to
describe relationships between variables or to make pre-
dictions.  ANOVA model equations are not often used in
substantive areas because the discrete-valued terms that
such equations contain are cumbersome, and the same de-
scriptions and predictions can be made more easily and
with better understanding from the (appropriately col-
lapsed, if necessary) table of predicted means of the val-
ues of the response variable for the different cells in the
group treatment table, or (perhaps better) from a graph
based on the (appropriately collapsed) table of means.
(For unsaturated model equations, we may have to obtain
estimates of the values of the parameters to enable us to
use the model equation to compute the associated col-
lapsed predicted means, but once these means are com-
puted, the parameter estimates and the model equation are
of little further use.)  Of course, model equations that are
not ANOVA model equations are often used in substantive
areas, especially in the hard sciences, to describe relation-
ships between variables.  Such model equations usually
contain continuous terms rather than discrete-valued
terms.

B.4  The Final Form of the Model Equation:  Theoreti-
cal Considerations

Another argument in favor of checking the associated
lower-level components for significance in the presence of
a significant higher-level interaction is that such checks
tell us which terms to include in the final form of the
model equation, and this knowledge may be useful to sci-
entific theoreticians in understanding the underlying proc-
esses in the entities under study.

However, model equations derived in standard
ANOVA are not often viewed as reflecting (in any illumi-
nating way) the underlying processes in the entities be-
cause the equations are designed to be capable of handling
any set of means of the values of the response variable for
the various cells in the group treatment table—that is, the
equations are completely general—and (apart from show-
ing which type of relationship has been found, and if in-
teraction is found, that a model equation with only simple
effect terms will not work) such completely general model
equations usually cannot provide much insight into the
underlying processes in the entities. (On the other hand,
the appropriately collapsed cell means can provide useful
insight because they can assist the theoretician to test the
fit of a specific function to the data to describe the rela-
tionship between the response variable and the relevant
predictor variables.)

B.5  A Graphical Argument
The lack of usefulness of performing a statistical test

of a simple relationship or interaction when there is evi-
dence that the predictor variable(s) associated with the ef-
fect or interaction are all involved in a significant higher-
level interaction can also be seen in terms of graphs.  Per-
forming a statistical test of a lower-level relationship
when the predictor variable(s) associated with the rela-
tionship is (are all) involved in a significant higher-level
interaction is equivalent to looking at a collapsed graph of
the predicted cell means of the values of the response
variable—collapsed over all the predictor variables except
the variables associated with the lower-level relationship.
But we should generally never collapse over predictor
variables involved in a significant interaction because the
resulting graph will be concealing information about the
true nature of the relationship between the response vari-
able and the predictor variables.  And predictions of the
value of the response variable for new individual entities
(in the same population under the same conditions) made
on the basis of this graph (or on the basis of the associated
collapsed cell means) will be less accurate than predic-
tions made on the basis of the graph (or cell means) of the
full interaction.

B.6  Exceptions
Despite the points made above, there are rare situ-

ations in which it is necessary to perform a lower-level
statistical test even though an associated predictor variable
is also clearly involved in a higher-level interaction.
Tukey (1977) gives an example of such a situation, which
I have enhanced slightly for realism:

Suppose we work in the marketing department of a
candy manufacturer, and suppose a particular brand of
candy we sell is available in two flavors, and suppose, for
budgetary reasons, it is necessary to discontinue selling
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one of the flavors and, for obvious reasons, we have de-
cided to discontinue selling the flavor that has the lesser
sales.  To evaluate the relative sales of the two flavors,
consider an observational study in which the entities are a
random sample of people in the geographic area where the
candy is sold, the response variable is the volume of sales
of each flavor of the candy to each person, and the predic-
tor variable is the flavor of the candy.  Suppose we have
performed this (repeated measurements) study, and sup-
pose we also happen to know the sex of each person who
participated in the study, and suppose our application of
ANOVA to the data reveals that there is an interaction
between flavor and sex with respect to their joint relation-
ship to sales.  That is, the difference in sales between the
two flavors is different for females from the difference in
sales between the two flavors for males.

Despite the fact that we have found an interaction, we
still need to know whether one flavor sells significantly
better overall than the other, so that we can confidently
discontinue selling the lesser-selling flavor.  Thus despite
the interaction, we still need to perform a statistical test of
the simple relationship between flavor and sales to de-
termine if we have good evidence as to which flavor sells
better than the other.

[Note that in performing the statistical test of the
simple relationship between flavor and sales, we should
use the HTO sum of squares because the HTI sum of
squares is effectively comparing the collapsed-over-sex
mean of the two cell means for the first flavor with the
collapsed-over-sex mean of the two cell means for the
second flavor and, of course, this comparison will fail to
detect a difference if the two means of the cell means are
identical.  However, if the two population sales means
(across sex) of the cell means are identical, and if there
are more females than males in the population (or more
males than females), this does not imply that the two fla-
vors have identical sales in the population.  Instead, if the
population ratio of females to males differs substantially
from 1:1, it is possible to build a situation (specifically, a
particular type of interaction between flavor and sex) in
which there is a substantial difference in overall sales
between the two flavors, but the two collapsed-over-sex
means of the population cell means are identical.  In that
situation (and in situations approaching that situation) the
HTI test can be expected to fail to detect the difference in
overall sales between the two flavors.  On the other hand,
if the sample is random, it is not possible to build a situ-
ation in which the HTO test can be expected to fail to de-
tect an existing difference in overall sales between the two
flavors (although, naturally, the power of the HTO test
varies with the form of the relationship and the pattern of
imbalance).]

The candy sales example shows a practical situation
in which we will still be interested in performing a statis-

tical test for a simple relationship (main effect) even
though the predictor variable involved in the simple rela-
tionship is also involved in a significant interaction.
However, it is important to note that the example is un-
usual because (unlike most other research projects) in the
example we are not interested in optimizing the value of
the response variable in individual entities, but instead we
are interested in optimizing  (i.e., maximizing) the sum of
the values of the response variable across all the entities in
the population.  (That is, we are interested in maximizing
sales across people.)  If it were not for the unusual sum-
ming feature of this research project, it would generally
not make sense to perform the test for the simple relation-
ship in the presence of the higher-level interaction.

That is, if we wish to maximize the sales of the candy
to individuals, and if there is an interaction between flavor
and sex, and if we are only able to offer one flavor to each
sex, then we should offer to sell to each individual the fla-
vor that sells best to that individual’s sex, with (in view of
the interaction) it being possible that one flavor will sell
better to one sex, and the other flavor will sell better to the
other.  Or, in more general terms, if we wish to predict (or
possibly control) the values of the response variable in
new entities that are similar to those used in the research
project (as opposed to wishing to predict or control the
sum of the values of the response variable across such
entities), we should view the relationship between the re-
sponse variable and the predictor variables in its full
complexity because only from that point of view can we
make the best predictions (or possibly exercise the best
control).

Elston and Bush (1964:686) and Frane and Jennrich
(1977) give examples that are similar to Tukey’s in that
they reflect situations in which the scientist is interested in
optimizing the sum of the values of the response variable
across all the entities in the research project as opposed to
optimizing the value of the response variable in individual
entities.

Thus despite the preceding unusual example, it is still
reasonable to conclude from the earlier arguments that
enlightened scientists will usually not be interested in ex-
amining lower-level relationships between the response
variable and the predictor variables once they have con-
cluded that an associated higher-level interaction exists.

B.7  Valid Means of Rebuttal
Note that the arguments in sections B.2 to B.5 are not

incontrovertible because it is logically impossible to prove
that no (further) reasonable use exists for a lower-level
test in the presence of a significant associated higher-level
interaction.  Thus to disprove the arguments given in those
sections one need only describe a frequently applicable
reasonable use for an associated lower-level test in the
presence of a significant higher-level interaction.
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Here the important word is “reasonable”.  If we view
statistics as a tool of scientific research, any acceptable
argument about a reasonable use of lower-level tests in the
presence of an associated higher-level interaction must be
couchable in terms of an example of a “reasonable” sci-
entific research project.  Thus examples with toy data or
examples that are designed to teach statistics, but that sci-
entists in a substantive area would not consider reason-
able, are themselves not reasonable.  And for an argument
to be convincing, it must present a situation in which an
enlightened scientist (not just a statistician) who is study-
ing relationships between variables would have a clear
interest in knowing whether a lower-level test is signifi-
cant in the presence of a believably significant associated
higher-level interaction.  This paper claims that such
situations, although they do occur, are rare.

Nelder (1977) and Aitkin (1978) and their discussants
give further thoughts on the usefulness of performing a
statistical test for a simple relationship or lower-level in-
teraction in the presence of a higher-level interaction in-
volving the same predictor variables.

B.8  Breakdown Analyses
I have discussed reasons why if we are seeking evi-

dence of relationships between variables, we are usually
not interested in testing associated lower-level ANOVA
components in the presence of a believably significant
higher-level interaction.  However, the procedure of test-
ing associated lower-level components should be clearly
distinguished from the procedure of performing a
“breakdown analysis” of an interaction.  A breakdown
analysis consists of analyzing one or more subsets of the
full data.  In the simplest case each subset contains data
from only one of the levels of one of the predictor vari-
ables that are in the interaction, but includes data for all of
the levels of all of the other predictor variables that are in
the interaction.  (More generally, a breakdown analysis
can include data for a subset of the levels of a subset of
the predictor variables that are in the interaction, and can
also include data for all of the levels of some or all of the
other predictor variables that are in the interaction or that
are in the experiment.)  Although breakdown analyses
sacrifice some power and generality, their use is somet-
imes justified because they can help to simplify compli-
cated relationships.

B.9  Extant But Non-Significant Higher-Level Interac-
tions

I have concluded that a researcher usually need not be
interested in performing statistical tests of lower-level
components once he or she has decided that the associated
predictor variables are all involved in a higher-level inter-
action if the researcher is seeking evidence of relation-
ships between variables.  Therefore, if we are seeking evi-

dence of relationships between variables, the fact (noted at
the end of section 16) that some lower-level tests are valid
only in the absence of the associated higher-level interac-
tions is generally not a problem in situations in which
there is a significant higher-level interaction because, in
that case, we are usually not interested in performing the
associated lower-level tests.

But suppose an interaction exists in the population,
but a statistical test of the interaction fails to find evidence
of it.  If the effects of the interaction are just below the
level of detectability, then the presence of the interaction
terms in the HTO test of a lower-level relationship may
make it more likely that the lower-level relationship test
will be significant.  However, this is desirable since the
existence of the interaction implies that there is a relation-
ship between the response variable and the associated
predictor variables, and we would like at least one of our
statistical tests to find some evidence of it.

On the other hand, if an interaction exists in the
population, but our statistical test of the interaction fails to
find evidence of it, then the presence of the undetected
interaction terms in the HTO test of a lower-level relation-
ship may make it less likely that the lower-level test will
be significant.  Further investigation of this possibility is
needed.  However, the fact [as can be seen by comparing
(11) and (12) with (6), (13), and (14)] that the HTO statis-
tical test appropriately weights (using the cell counts) each
of the estimates of the values of the parameters according
to its relative accuracy while the HTI test uses no such
weighting suggests that the HTO test will not often (if
ever) be less powerful than the HTI test in this special
situation.

B.10  Summary
In section 16 I noted that the HTO sums of squares

are appropriate if our goal is to test for evidence of a rela-
tionship between variables in the absence of associated
higher-level interactions.  In this appendix I discussed
why the qualification about higher-level interactions
usually does not give rise to problems.

APPENDIX C:  PROOF OF THEOREM 2
Theorem 2 was first stated for the two-way case by

Yates (1934:66).  As noted by Knoke (1987), theorem 2
can be derived from the fact that the maximum likelihood
estimator has maximum power in an ANOVA context, as
suggested by Wald (1942).  Theorem 2 was directly
proved geometrically for the two-way case by Burdick and
Herr (1980:239) and algebraically for the two-way case by
Hocking (1985:152).

The following geometric proof for the n-way case is
due to Donald S. Burdick:

Definition:  The response vector is the vector of all
the usable values of the response variable that were
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obtained in a research project, one element of the
vector for each usable value of the response variable
that was obtained.

Definition:  The observation space is the space in
which the response vector lies.

Definition:  The population mean vector lies in the
observation space and is identical to the response
vector except that each elemental value is replaced by
the (generally unknown) population mean value of the
response variable for the cell in the group treatment
table associated with that element.

The definition of the population mean vector con-
strains it to lie in a subspace of the observation space
called the estimation space.  The dimension of the esti-
mation space is equal to the number of cells in the group
treatment table (although, of course, the number of com-
ponents in a vector in the estimation space remains the
same as the number of components in the response vec-
tor).

For any given effect E, the associated sum of squares,
whether HTO or HTI, is the squared length of the projec-
tion of the response vector on a subspace of the observa-
tion space.  The power of a statistical test of E is an in-
creasing function of the noncentrality, which is in turn an
increasing function of the length of the same projection of
the population mean vector on the subspace.

Using the standard sequential—i.e., orthogonal—
partitioning we can decompose the population mean vec-
tor into the sum of its projections on two subspaces of the
estimation space:
• the subspace of the other effects at the Same or Lower

level as E (which I call the SL subspace)
• the subspace of vectors in the estimation space that are

orthogonal to the SL subspace (which I call the test sub-
space).

The test subspace contains the subspace associated
with the HTO sum of squares for E. (This is because the
HTO sum of squares is identical to the next sum of
squares in the orthogonal partitioning mentioned in the
preceding paragraph.)

The test subspace also contains the subspace associ-
ated with the HTI sum of squares for E.   (This is because
the HTI sum of squares is identical to the next sum of
squares in an orthogonal partitioning in which the other
effects at the same and lower levels and all the effects at
the higher levels have already been fitted.)

If there are no higher-level interactions, the compo-
nent of the population mean vector in the test subspace
lies entirely in the subspace associated with the HTO sum
of squares.  (This is because the HTO subspace is capable
of capturing—in the absence of higher-level interac-

tions—all of the variation in the mean vector apart from
that captured in the SL subspace.)  That in turn implies
that the component of the population mean vector in the
HTI subspace is a projection of the HTO component with
the result that the HTI component is a leg of a right trian-
gle of which the HTO component is the hypotenuse.
Since a leg can be no longer than a hypotenuse, the non-
centrality for HTI can be no greater than the noncentrality
for HTO.

And thus the theorem is proved.
__________

I now summarize two simple matrix algebra proce-
dures that illustrate the ideas of theorem 2.  You may find
it helpful to program the procedures in a matrix algebra
computer language, after which you can try them on dif-
ferent datasets.

You can obtain the matrix of the projection and the
resulting sum of squares for the HTO, HTI, HTOS
(appendix D), or the sequential statistical tests with the
following procedure, which is based on a discussion by
Hocking (1985:152-155):
• specify y, the response vector, which we assume has n

elements
• specify C, a cell-means contrast matrix of the hypothesis

to be tested;  C has one row for each degree of freedom
in the hypothesis and it has one column for each cell in
the group treatment table; each row of C specifies a dif-
ferent contrast of the cell means; collectively these
contrasts define a hypothesis to be tested; see below for
a procedure to generate different versions of C

• specify W, the counting (incidence) matrix; W has n
rows and it has one column for each cell in the group
treatment table; an entry in a cell of W is 1 if the y-value
associated with the row is associated with the group-
treatment-table cell that is associated with the column,
and zero otherwise

• compute H, a response-vector contrast matrix of the hy-
pothesis to be tested, by using W to scale C:

H = C(W'W)-1W'
H has one row for each degree of freedom in the hy-
pothesis and n columns

• compute P, the response-vector projection matrix, by
squaring and normalizing H:

P = H'(HH')-1H (15)
P has n rows and n columns

• compute p, the projection of the response vector:
p = Py

p has n elements
• compute SS, the desired ANOVA sum of squares, by

computing the squared length of p:
SS = p'p.

Graybill (1983:69-76, 434-437) discusses the algebra
of projections.
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If you are using a matrix algebra computer package to
do the arithmetic, specifying C is the only difficult step in
using the foregoing procedure.  (Of course, the rows of C
are simply variations of the contrasts that are used in the
balanced case.  These variations can be obtained by mul-
tiplying the balanced-case coefficients in a row by various
functions of the cell counts.)  For the two-way case you
can derive different versions of C from (6) and (11) or
from the formulas given by Speed, Hocking, and Hackney
(1978, table 1), Herr and Gaebelein (1978, table 2), and
Kutner (1974).

For the general case you can use the following proce-
dure to generate an H matrix directly, thereby bypassing
the need to specify C and W.  Page references below are
to Searle’s Linear Models for Unbalanced Data (1987)
and references to IML are to the SAS IML User’s Guide
(SAS Institute, 1988):
• specify the full (but not necessarily saturated) over-

parameterized model equation [e.g., (8) above] and the
reduced overparameterized model equation [e.g., (7)
above] whose residual sums of squares you wish to dif-
ference to obtain the desired sum of squares

• specify a simple full-rank design sub-matrix for each
predictor variable in the ANOVA; a simple full-rank
design sub-matrix has n rows and it has as many col-
umns as there are degrees of freedom associated with the
predictor variable (i.e., one less than the number of val-
ues that the associated predictor variable had in the re-
search project); each column reflects a contrast of the
values of the response variable for different values of the
predictor variable that is associated with the sub-matrix;
you can use the SAS IML DESIGNF function to gener-
ate a simple full-rank design sub-matrix from the vector
of the raw values of a predictor variable

• specify full-rank design sub-matrices for all of the inter-
actions; a full-rank design sub-matrix for an interaction
consists of the horizontal direct product of all the simple
full-rank design sub-matrices for predictor variables that
are associated with the interaction; you can use the SAS
IML HDIR function to compute horizontal direct prod-
ucts of matrices

• specify X2 as the full-rank design sub-matrix for the
particular component of the ANOVA for which you
wish to compute the sum of squares (that is, X2 is one of
the design sub-matrices you specified in the preceding
two steps)

• specify X1 as the horizontal concatenation of all of the
design sub-matrices whose associated terms are in the
full model equation specified above including a vector
of 1’s for the constant term m  but excluding the design
sub-matrix for the term being tested; you can use the
SAS IML horizontal concatenation operator | | to per-
form horizontal concatenation of matrices

• compute M1 as defined in Searle’s equation (76) on

pages 263 and 318:

M I X X1 1 1= - +

where X+  denotes the Moore-Penrose generalized in-
verse of X

• compute A as a normalized form of M1X2, as defined by
Searle’s equation (82) on page 264 and equation (90) on
pages 272 and 318:

A M X M X= +
1 2 1 2( )

• if d is the number of degrees of freedom in the hypothe-
sis, then the d rows of an H matrix are equivalent to the
d characteristic vectors (eigenvectors) of A that corre-
spond to the d nonzero characteristic values
(eigenvalues) as shown by Searle in subsection -iv on
page 235.

After computing an H matrix with the foregoing pro-
cedure, you can then, if you wish, compute a C matrix
from H as HW.

Note that for a given approach to computing a sum of
squares, C and H are generally not unique.  That is, any
set of linearly independent vectors that generate the sub-
space of the projection represent a valid statement of the
hypothesis being tested (in terms of contrasts of the re-
sponse vector).  Of course, all the different statements of
the hypothesis are different but equivalent expressions of
the same test of the hypothesis that there is a relationship
between the response variable and the particular predictor
variable(s) associated with the test.

In particular, (M1X2)' is another statement of the hy-
pothesis being tested (in terms of contrasts of the response
vector) and thus can be used in place of H in (15) to com-
pute P, thereby bypassing the need to compute A and its
characteristic vectors.

I noted above that an ANOVA sum of squares is equal
to the squared length of a projection Py.  Another fre-
quently used general theoretical formula for computing
ANOVA sums of squares is the quadratic form y'Ay where
A is as defined above.  Thus

y'Ay = (Py)'Py
= y'(P'P)y

thus illustrating that P is simply a partitioning (“square
root”) of A.

APPENDIX D:  AN EXTENSION TO THE HTO
APPROACH FOR THREE-WAY
AND HIGHER EXPERIMENTS

D.1  The HTOS Approach to Computing ANOVA
Sums of Squares

I have concluded that for the ANOVA statistical test
of any particular type of relationship (i.e., a particular
simple relationship or interaction) between the response
variable and the predictor variables:
• in the absence of higher-level interactions, the HTO
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method of computing sums of squares is preferred to the
HTI method

• in the presence of higher-level interactions that involve
all of the predictor variables associated with the rela-
tionship being tested, we are usually not interested in
performing the lower-level statistical test.

Let us now turn to the situation in which there is a
higher-level interaction in the population among some of
the predictor variables (with respect to their joint relation-
ship to the response variable) but this interaction is not as-
sociated with all of the predictor variables that are asso-
ciated with the particular relationship between variables
that we are currently interested in testing.  (In fact, the
interaction may not even be associated with any of the
predictor variables associated with the relationship.)  This
situation occurs in some experiments with three or more
predictor variables.  As we shall see, in this situation we
are sometimes interested in performing lower-level statis-
tical tests in the presence of higher-level interactions, and
thus it is of interest to compare various methods of com-
puting the relevant sums of squares for these tests.

For example, suppose we wish to analyze the results
of a fully crossed three-way experiment in which the pre-
dictor variables are A, B, and C.  We can write the satu-
rated overparameterized model equation for the relation-
ship between the response variable and the predictor vari-
ables as:

yijkl i j k

ij ik jk

ijk ijkl

= + + +
+ + +

+ +

m a b g
ab ag bg

abg e

( ) ( ) ( )

( ) .

where the ( ) , ( ) , ( )ab ag bgij ik jk  and  terms represent the
three two-way interactions and the ( )abg ijk  term repre-
sents the three-way interaction.

Suppose our analysis has found no evidence that pre-
dictor variable A is involved in any of the interactions, and
thus we are interested in testing for the A simple relation-
ship (main effect).  If we use the HTO approach, we will
compute the numerator sum of squares for the A statistical
test by, in effect, differencing the residual sums of squares
of the following two generating model equations:

yijkl j k ijkl= + + +m b g e

yijkl i j k ijkl= + + + +m a b g e .

Now suppose that we have evidence (through the B
¥  C statistical test) that a B ¥  C interaction is present in
the population.  Then the question arises whether, as well
as including terms for predictor variables B and C as is
done in the preceding two equations, we should also in-
clude a term for the B ¥  C interaction in the two generat-
ing model equations.  That is, the question arises whether
we should compute the sum of squares for the A simple
relationship by differencing the residual sums of squares

of the following two model equations:

yijkl j k jk ijkl= + + + +m b g bg e( )

yijkl i j k jk ijkl= + + + + +m a b g bg e( ) .

We represent this new approach to computing sums of
squares with the name HTOS because Higher-level Terms
are Omitted except for any Significant higher-level inter-
actions that are not associated with all of the predictor
variables that are associated with the effect being tested.
The HTOS approach was proposed by Heiberger and
Laster (1977).

Two questions arise about the HTOS approach:
• Is the HTOS approach valid for testing for relationships

between the response variable and the predictor vari-
ables?

• Given that the HTOS approach is valid, which approach
is more powerful—HTOS, HTO, or HTI?

Although the details are beyond the scope of this pa-
per, it can be shown that the HTOS approach is valid.
Furthermore, it can be shown that in the presence of
higher-level population interactions between the predictor
variables that are not associated with all of the predictor
variable(s) associated with the test (but in the absence of
higher-level interactions that are associated with all of the
predictor variables associated with the test), the HTOS
approach generally provides a more powerful statistical
test than either the HTO approach or the HTI approach.
(Of course, when there are no such non-associated higher-
level interactions, the definitions imply that the HTOS and
HTO sums of squares are identical, and thus the associated
HTOS and HTO statistical tests will have identical
power.)

Thus when we are testing for relationships between
the response variable and the predictor variables in unbal-
anced ANOVA with no empty cells in the group treatment
table, the HTOS sums of squares are preferred to both the
HTO and the HTI sums of squares because the HTOS
sums of squares generally provide slightly more powerful
statistical tests.

D.2  The HTOS Cutoff Point
When we use the HTOS approach in three-way and

higher experiments we need a procedure for deciding
whether to include a particular non-associated higher-level
interaction term in the two generating model equations for
a given statistical test.  A reasonable procedure is to de-
fine a critical p-value for such interactions, and then to use
this critical p-value as a cutoff point:  If the p-value for a
non-associated higher-level interaction is greater than the
cutoff point, we (or the computer) form the two generating
model equations for the effect being tested omitting the
term for that interaction from both the model equations.
But if the p-value for the interaction is less than or equal
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to the cutoff point, we form the two generating model
equations for the effect being tested including the term for
that interaction in both the equations.

In choosing the cutoff point it seems a more serious
error to omit needed terms from the generating equations
(which results in a violation of the assumption of inde-
pendence of the values of the error term) than to include
unneeded terms in the equations (which has no effect on
the independence of the values of the error terms), and
therefore it seems reasonable to choose a relatively high
cutoff point for this procedure such as .1 or .2.  A cautious
scientist may even decide to use a cutoff point of 1, which
is the limiting case.  Then terms for all the non-associated
higher-level interactions will always be included in the
two generating model equations at a cost of a slight de-
crease in power relative to the appropriate HTOS generat-
ing model equations.

D.3  How To Compute HTOS Sums of Squares
Currently, the HTOS sums of squares are not directly

available in the ANOVA or general linear model proce-
dures of any of the popular statistical computer packages.
However, as noted above, the HTOS sums of squares are
identical to the HTO sums of squares (which are available
in some packages) except when there are significant non-
associated higher-level interactions.  If the available pack-
age cannot compute HTO sums of squares, or if there is a
non-associated higher-level interaction, you can compute
the necessary HTOS sums of squares by using the proce-
dures discussed in the last two paragraphs of section 13.3.

APPENDIX E:  OTHER APPROACHES TO ANOVA
STATISTICAL TESTS

In addition to the HTOS, HTO, and HTI methods of
computing and performing ANOVA statistical tests, vari-
ous other methods have been proposed.  (Some of these
methods can be defined in terms of differencing the resid-
ual sums of squares of two generating model equations.)
Therefore, it is useful to ask whether another method
might be better than any of the preceding methods if we
wish to test for evidence of a population relationship be-
tween the response variable and the predictor variables in
an experiment.

Although detailed discussion of other methods is be-
yond the scope of this paper, the following criteria are
reasonable for evaluating any proposed method of com-
puting and performing ANOVA statistical tests if we wish
to test for evidence of a relationship:
• for any proposed method, the resulting tests should be

valid in the sense given in section 16
• of all the valid proposed tests of a given relationship, the

test of choice should, in general, have the greatest power
• to eliminate arbitrariness, the p-values obtained from a

test should not depend on an ordering of the predictor

variables (as occurs with tests based on so-called se-
quential or hierarchical sums of squares) unless there is
a clear rationale for using such an ordering

• to lessen the need for a formal procedure to correct for
the multiplicity of statistical tests (because such a proce-
dure will often substantially diminish the power of the
tests), formally only a single test should be defined for
each component in the ANOVA table (although (a) as
discussed in the preceding section, the definition of any
test may be contingent on the outcome of logically prior
tests and (b) informally we may perform as many differ-
ent tests as we wish to help us to understand the data)

• to lessen the need for a formal procedure to correct for
multiplicity, formal tests of pooled components should
usually be omitted

• tests can be chosen keeping in mind that they will usu-
ally only be used when it is reasonable to assume that
associated higher-level interactions are non-existent, as
discussed in appendix B.

These criteria rule out some other methods of
computing and performing ANOVA statistical tests.

The importance of maximizing the power of the
ANOVA statistical tests (while maintaining their validity)
implies that it may be reasonable to define criteria for
pooling F-ratio denominator sums of squares in some
ANOVA situations (as discussed by Steinhorst and Ever-
son 1980, and Hocking 1985:150).  However, discussion
of such denominator pooling should be distinguished from
the discussion in this paper, which is about methods of
computing F-ratio numerator sums of squares
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