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ABSTRACT 

The basic ideas behind the statistical p-value are reviewed. It is proposed that the function of the p-
value in scientific research is to provide a measure of the weight of evidence that an effect observed 
in the data from a sample is a real effect in members of the underlying population. The need in 
scientific research for a measure of the weight of evidence that an effect is real is assessed. Serious 
problems with the p-value are identified. The p-value is compared with seven other measures that 
perform the same function (t-statistic, confidence interval, likelihood ratio, Bayes factor, posterior 
probability that the null hypothesis is true, D-value, and information-criteria). The comparisons im-
ply that the p-value is superior to the other measures for detecting effects in scientific research.  

KEY WORDS: Hypothesis testing; Significance testing; Basic statistical ideas; Role of statistics in 
scientific research 

1. Introduction 
Many researchers agree that the p-value helps them to de-

tect meaningful “effects” in scientific research data. However, 
various authors criticize the p-value, identifying serious prob-
lems with it. The present paper (a) reviews the scientific and 
statistical ideas behind the p-value, (b) summarizes the prob-
lems associated with the p-value, and (c) compares the p-
value with seven alternative approaches to detect effects. The 
goal is to determine which approach is best to detect effects 
in scientific research data. 

To ensure a common base, some of the discussion at the 
beginning of this paper is basic. The advanced reader’s indul-
gence is requested. Also, since a key role of statistics is to 
support scientific research, this paper often links statistical 
ideas to scientific research. Also, the paper focuses on making 
statistical ideas easy for beginners to understand because 
many beginners presently misunderstand key ideas. 

The rest of the paper proceeds as follows:  
• Section 2 describes how a large proportion of scientific re-

search can be reasonably viewed as studying relationships 
between variables in populations of entities as a means to 
accurate prediction or control. We study a relationship be-
tween variables in a sample of entities selected from the 
population. 

• Section 3 explains how the p-value provides a reasonable 
measure of the weight of evidence that an effect (usually a 
relationship between variables) observed in the research 
data for a sample is a real effect in members of the popula-
tion of entities behind the sample.  

• Section 4 discusses how we need a measure of the weight 
of evidence that an effect is real to reduce the occurrence of 
incorrect scientific conclusions.  

• Section 5 reviews the important distinctions in scientific re-
search between (a) the existence of an effect (e.g., the ex-
istence of a relationship between variables), (b) the strength 
or size of an effect, and (c) the practical or theoretical im-
portance of an effect.  

• Section 6 lists serious problems with the p-value that raise 
questions about its usefulness.  

• Section 7 summarizes comparisons of the p-value with 
seven sensible alternative measures of the weight of evi-
dence that an effect is real. (Details of the comparisons are 
in an appendix.) The comparisons suggest that the p-value 
is superior to each of the other measures. 

• Section 8 draws conclusions. 

2.  Relationships Between Variables as a Means to 
Accurate Prediction and Control 

We can view a large proportion of scientific research as 
studying relationships between variables as a means to accu-
rate prediction and control. Of course, the variables that we 
study in scientific research reflect the measured values of 
properties of the entities that we study in the research. A var-
iable can represent any particular property of entities that we 
might wish to study in any area of life. 

A relationship exists in a population of entities between a 
“predictor” variable 𝑥 and a “response” variable 𝑦 if when 𝑥 
changes in value in the entities, 𝑦 changes in value somewhat 
“in step” with 𝑥 in the same entities. For example, if we use 
an umbrella properly (𝑥) when it is raining, then our dryness 
(𝑦) will generally be greater. In other words, there is a rela-
tionship between using an umbrella properly and staying dry 
in the population of human beings. 

In everyday life we discover many relationships between 
variables through informal observation. (Many young chil-
dren are fascinated when they first recognize the practicality 
of the umbrella relationship.) Throughout our lives we learn 
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about hundreds of thousands of similar relationships between 
variables. We learn about many such relationships on an intu-
itive unspoken level, such as the various relationships be-
tween variables that we must learn to ride a bicycle. We use 
our knowledge of relationships between variables to help us 
to predict and control our surroundings. 

We can use a scientific research project as a powerful for-
mal way to study the relationship between any variables 𝑥 and 
𝑦 that we might wish to study. A standard research project (or 
logical portion of a research project) measures the values of 
selected properties of the entities (i.e., measures the values of 
variables) in a “sample” of entities that has been selected from 
the population of interest. The research project collects these 
measured values in a data table whose data are, on a technical 
level, the main object of study in the research. Of course, on 
a conceptual level, the main objects of study in the research 
are the entities in the population behind the sample data. 

Most data tables have the same standard structure. Each 
row in the table is associated with data for a different entity in 
the sample. And each column is associated with values of a 
different variable. Each cell (intersection of a row and a col-
umn) in the table contains the value of the variable associated 
with the column for the entity in the sample associated with 
the row. 

We analyze (study) the data in a relevant data table to 
study relationship(s) between selected variables in the entities 
in the sample. If we do the data collection and analysis 
properly, this enables us to draw reliable conclusions about 
the relationship(s) between the variables in the entities in the 
entire population of entities that lie behind the entities in the 
sample. This generalization is important because we are usu-
ally mainly interested in drawing conclusions about relation-
ships between variables in the underlying population, not 
merely about relationships in the sample. 

Usually we can view a scientific research project (or a log-
ical portion of a research project) as studying a particular sin-
gle response variable 𝑦 that is in a column of the data table. 
And usually we can view a research project (or portion) as 
studying one or more predictor variables 𝑥 that are also in col-
umns of the table. We wish to determine whether and how the 
values of 𝑦 in the entities in the population “depend” on the 
values of 𝑥 in the entities.  

If we can find a relationship between a set of one or more 
predictor variables and the response variable in the entities in 
a population, then we can use the information about the rela-
tionship to help us to predict or control the values of the re-
sponse variable in new entities from the population. For ex-
ample, medical researchers may study whether a beneficial 
relationship exists between the amount (𝑥) of a particular 
drug administered to medical patients with a certain disease, 
D, and the amount (𝑦) of disease D in the patients. If the re-
searchers can find good evidence that there is a beneficial re-
lationship between the amount of the drug and the amount of 
the disease, then doctors can use the knowledge of the rela-
tionship to reduce the disease in new similar patients (by pre-
scribing the drug for them). Similarly, if psychologists can 
find a relationship between the style of upbringing (𝑥) of a 
child and the child’s later sense of happiness (𝑦), then parents 

can use the knowledge of this relationship to help them to 
raise happy children. 

In studying a relationships between variables, it is im-
portant to distinguish between “observational” research pro-
jects and “experimental” research projects. In an observa-
tional research project we collect the data by observing the 
values of the predictor variable(s) in the entities in the sample. 
We also observe the values of the response variable in the en-
tities. We collect these observed values in a data table. We 
analyze the data in the table and, if possible, we derive a 
“model equation” for the relationship between the variables, 
as explained in statistics textbooks. If we properly derive such 
an equation, then we or others can use it (or a graph or text 
summarizing it) to predict the values of the response variable 
in new entities from the population. We make the predictions 
by substituting the values of the predictor variable(s) for a 
new entity into the equation and then evaluating the expres-
sion to yield the predicted value of the response variable for 
the entity. 

In contrast, in an experimental research project we sys-
tematically manipulate the values of one or more predictor 
variables in the entities in the sample and we subsequently 
observe the values of the response variable in the entities, 
again collecting the relevant data in a data table. (We may also 
measure some predictor variables that aren’t manipulated in 
the entities, but are merely observed.) As with observational 
data, we analyze the data in the table and, if possible, we de-
rive a model equation for the relationship between the varia-
bles on the basis of the analysis. If we properly derive such an 
equation, then we or others can (if socially appropriate) use it 
(or a summary) to help us to control the values of the response 
variable in new entities from the population. We achieve the 
control for a new entity by appropriately manipulating the val-
ues of the relevant predictor variables in the entity according 
to the information in the model equation. 

The ability to predict or control that is achieved through 
scientific research is sometimes weak and sometimes strong, 
but rarely perfect. Therefore, we must take account of “error” 
in prediction or control. Statisticians have developed an ex-
tensive set of techniques to take account of error as discussed 
in statistics textbooks. 

If we find good evidence of a new (real) relationship be-
tween variables in a population, and if we publish a report of 
the relationship, then the knowledge of the relationship (as 
summarized by the model equation or by a derived table or 
graph) becomes a new fact in the body of human knowledge. 
The contribution of new knowledge about a relationship be-
tween variables is especially rewarding for a researcher if the 
relationship has important practical or theoretical implica-
tions. 

The preceding paragraphs imply that scientific research 
enables us to develop a model equation of a relationship be-
tween variables, which enables us to predict or control the 
values of response variables in new entities from the relevant 
population. Prediction and control are clearly useful scientific 
goals.  

A second important goal of scientific research is to 
achieve an “understanding” of the entities in the population. 
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(This second goal is obviously assisted by knowledge of rela-
tionships between variables in the entities.) It is important to 
acknowledge the second goal, but this paper focuses on the 
first goal—prediction or control. 

Some researchers don’t view scientific research projects 
that collect data as studying relationships between variables. 
But, arguably, we can readily view almost any empirical re-
search project that studies the data in a data table as studying 
one or more relationships between the variables in the entities 
in the population behind the sample. This unifying point of 
view substantially increases understanding of scientific re-
search because it enables us to view most research projects 
through the same sensible logical lens. Appendix A discusses 
some apparent exceptions to these ideas.  

3. Hypothesis Testing with p-Values to Detect Rela-
tionships Between Variables 

3.1. First Clean the Data 

If we wish to study a relationship between one or more 
predictor variables and a response variable using the data in a 
data table, then we must first perform a crucial housekeeping 
step. In this step we carefully identify and correct errors in the 
values in the table. This (mundane) step is important because 
data errors occur surprisingly often in scientific research, and 
the errors will obviously distort any analyses we do of the 
data. Statistics textbooks explain how to examine and (with-
out bias) “clean” scientific research data. 

3.2. Detecting Whether a Relationship Exists 

If we have a data table with properly collected and 
properly cleaned data, then the first step to study a relation-
ship of interest between the variables is to determine whether 
we have good evidence that the relationship actually exists. 
This step is important because we sometimes find that a rela-
tionship between variables under study doesn’t exist (or at 
least doesn’t exist in enough strength to be detected). It is sen-
sible to perform this step first because if we can’t find good 
evidence that a particular relationship between variables ex-
ists, then it is inefficient to study the relationship further in 
these specific research data (because such study may amount 
to studying mere noise in the data). 

If we have an appropriate table of research data, we can 
perform a “statistical hypothesis test” to assess whether a re-
lationship exists between selected variables in the table. If we 
do everything properly, this enables us (by extension) to as-
sess whether the relationship exists in the population. 

We begin a hypothesis test by stating (at least implicitly) 
two mutually exclusive and exhaustive hypotheses—the “re-
search hypothesis” and the “null hypothesis”. The research 
hypothesis says that a relationship exists between a specified 
predictor variable (𝑥) and the chosen response variable (𝑦) in 
the entities in the population. In contrast, the null hypothesis 
says that no relationship exists between 𝑥 and 𝑦 in the entities. 

More generally, as suggested in section 2, a research hy-
pothesis may say that a relationship of a particular type exists 

between a specified set of multiple predictor variables, 𝑥, and 
the response variable, 𝑦, in the entities in the population.  

(Some researchers refer to a research hypothesis in a sci-
entific research project as the “alternative” or “alternate” hy-
pothesis. However, those terms are less appropriate, as dis-
cussed in appendix B.1.) 

The scientific principle of parsimony tells us to keep our 
ideas as simple as possible while remaining consistent with 
the known facts (Baker, 2016). The null hypothesis is simpler 
than the research hypothesis because the null hypothesis has 
fewer details. Therefore, we begin the study of a new relation-
ship between variables with the assumption that the null hy-
pothesis is true. That is, we begin with the formal assumption 
that there is no relationship whatever between the variables of 
interest.  

Of course, informally we usually strongly believe (hope) 
the opposite—we believe that the research hypothesis is true. 
We believe that the research hypothesis is true because that is 
why we are doing the research—we want (among other 
things) to demonstrate that our cherished research hypothesis 
is true in the population (because that will advance human 
knowledge). 

The idea of formally beginning with the assumption that 
the null hypothesis is true refers to our formal thought pro-
cess. The idea doesn’t imply some formal behavior, such as 
signing a formal document. 

After assuming that the null hypothesis is true, we can an-
alyze the data in a relevant data table to determine whether 
the data show evidence that a relationship exists between se-
lected variables. Technically, we do this analysis by examin-
ing a particular “parameter” of a model equation for the rela-
tionship between the variables of interest. A parameter of an 
equation is a particular number that we estimate through an 
analysis of the data table. The estimated numeric value of 
each parameter of a model equation is an essential part of the 
detailed specification of the equation, as further explained in 
appendix B.  

If there is no relationship in a population between a pre-
dictor variable and a response variable, then it is easy to see 
that the relevant parameter of an appropriate model equation 
of the relationship between the variables will have a particular 
“null” value in the population. The null value is typically the 
value zero.  

For example, in a standard linear regression model equa-
tion, if there is no relationship between a given predictor var-
iable in the equation and the response variable, then the pa-
rameter (regression coefficient) for the term for this predictor 
variable will have a null value of zero in the population. In 
contrast, if there is a relationship between the variables, then 
the parameter will (usually) have a value that is different from 
zero. 

Thus we can determine whether a relationship exists be-
tween the variables in a given data table by appropriately es-
timating (through an analysis of the data) the value of the rel-
evant parameter. Then we can check to determine whether 
this value is “meaningfully” different from the relevant null 
value. If we find that the estimated value of a parameter is 
meaningfully different from the null value, then this is good 
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evidence that a relationship exists in the entities in the popu-
lation between (a) the predictor variable(s) 𝑥 associated with 
the parameter and (b) the response variable 𝑦. 

Statisticians have invented three sensible methods to esti-
mate (from appropriate scientific research data) the values of 
the parameters of a model equation. These are the least-
squares method, the maximum-likelihood method, and the 
Bayesian method. Each method is optimal (in a different 
sense) and each method has many details, as explained in sta-
tistics textbooks. It is reassuring that the methods (when ap-
plicable) generally closely or exactly agree with each other in 
their estimates of the values of the parameters of a given 
model equation. The methods agree because they all address 
the same basic goal, which is to find the best estimates of the 
values of the parameters of the equation to model the particu-
lar relationship between the variables under study. 

As noted, we can determine if a relationship exists be-
tween variables by checking the estimated value of the rele-
vant parameter to see if it is meaningfully different from the 
null value. More generally, instead of checking the value of a 
parameter, we can detect a relationship between variables by 
checking a “test statistic” derived from the data, such as an F-
statistic derived in analysis of variance. In this case, we use 
the same general ideas. That is, we specify the null value for 
the statistic—the value that would be (on average) expected 
to occur if the relevant null hypothesis is or were true in the 
population. Then we check the value of the statistic computed 
from the data to see if it is meaningfully different from the 
null value. 

3.3. The p-Value 

This paper considers several effective ways to perform a 
statistical hypothesis test to help us to check if the value of a 
parameter or test statistic is meaningfully different from the 
relevant null value. We first consider how the p-value enables 
us to perform such a test. 

The p-value is a probability (i.e., a fraction of the time). 
Here is a definition:  

Definition: The p-value for the estimated value of a 
parameter of a model equation (or the p-value for the 
value of a relevant test statistic) is the fraction of the 
time that the value, as estimated from the research 
data, will be as discrepant or more discrepant from the 
relevant null value as it is with the present data if the 
following three conditions are or were all satisfied:  
• the associated null hypothesis is or were true in the 

population 
• we were to perform the research project over and 

over, each time using a fresh random sample of en-
tities from the population of interest, and  

• certain often-satisfied technical assumptions that 
are required to correctly compute the p-value are or 
were adequately satisfied.  

Statisticians have discovered how to correctly compute p-val-
ues that satisfy this definition. 

The definition of the p-value implies that the lower the p-
value that is computed (from research data) for a relationship 

between variables, the less likely it is that we would have ob-
tained this state of affairs if the null hypothesis is or were true. 
Therefore, the lower the p-value, the more evidence we have 
(in the absence of a reasonable alternative explanation) that a 
relationship exists between the associated variables in the en-
tities in the population. Therefore, if the p-value is low 
enough, and if there is no reasonable alternative explanation 
for the low p-value, then we can (tentatively) “reject” the null 
hypothesis and (tentatively) conclude that the research hy-
pothesis is true. That is, we can (tentatively) conclude that the 
associated relationship exists between the variables in the 
population.  

Many different statistical hypothesis tests with p-values 
are available to detect relationships between variables. This is 
because there are several types of variables and there are sev-
eral types of research projects, and (for technical reasons) dif-
ferent types of variables and research projects generally re-
quire different tests. 

Fortunately, all of the standard procedures to compute p-
values for hypothesis tests have been programmed in widely 
available user-friendly statistical software. Thus a researcher 
needn’t know the details of how to compute p-values. Instead, 
if a researcher knows the name of the appropriate test, then he 
or she can easily compute a correct p-value for a relationship 
between the variables by supplying the relevant data and a few 
simple instructions to the appropriate software, and then “run-
ning” the software. The software will analyze the data, apply 
the requested test, and compute the correct p-value from the 
data and will also compute various other important statistics. 

By convention, we tentatively conclude that a relationship 
exists between variables if the p-value for the relationship is 
less than (or equal to) the chosen “critical” value (and if there 
is no reasonable alternative explanation for the low p-value). 
And, by convention, the critical p-value is often chosen to be 
0.05 or 0.01 although other critical values such as 0.005 or 
lower are sometimes recommended and used, as discussed in 
appendix C.  

If we compute a p-value for a relationship between varia-
bles, and if the p-value is less than (or equal to) the critical p-
value, then this is called a “positive” result. In computing a p-
value, a researcher almost always wishes to obtain a positive 
result because (in the absence of a reasonable alternative ex-
planation) this is good evidence that the research project has 
found what it was looking for.  

In contrast, if we compute a p-value for a relationship be-
tween variables, and if the p-value is greater than the critical 
value (e.g., greater than 0.05), then this is called a “negative 
result”. A negative results is almost always disappointing for 
a researcher because it means that the research project has 
failed to find good evidence of what it was looking for.  

Appendix B.12 shows how the operation of the p-value 
implies that if we do everything properly, and if we use a crit-
ical p-value of 0.05, then in those cases when a detectable re-
lationship doesn’t exist between the variables, we will obtain 
a p-value less than (or equal to) 0.05 in 5% of the cases. That 
is, the results will mistakenly suggest that a relationship does 
exist in 5% of the cases even though the relationship actually 
doesn’t exist. This deceptive result is called a false-positive 
error. In many standard situations the 0.05 false-positive error 
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rate (or the 0.01 rate) is judged to be acceptable. This is be-
cause requiring a lower false-positive error rate (e.g., using a 
critical p-value of 0.005) would drive research costs too high, 
as discussed in appendix C. Researchers rarely use critical p-
values that are higher than 0.05 because such values are seen 
as too lenient—allowing too many false-positive errors to oc-
cur. 

False-positive errors are obviously highly undesirable be-
cause they falsely lead us to believe that a non-existent rela-
tionship exists between variables, which may lead to a sub-
stantial waste of resources. Fortunately, these errors are easy 
to identify, as discussed below in section 3.6. 

Appendix B.12 also shows how the operation of the p-
value implies that if we do everything properly, and if we use 
a critical p-value of 0.05, then in those cases when a detecta-
ble relationship does exist between the variables we will ob-
tain a p-value greater than 0.05 in a certain proportion of the 
cases. (The proportion depends on the strength of the relation-
ship and on the design of the research project.) That is, the 
results will mistakenly imply that we have no evidence of a 
relationship, even though the relationship exists. This decep-
tive result is called a false-negative error. In this case we have 
missed discovering a relationship between variables that is ac-
tually present in the population.  

Like false-positive errors, false-negative errors are also 
obviously highly undesirable because they amount to a failure 
to find what we are looking for, even though what we are 
looking for is there. Fortunately, these errors are easy to re-
duce by increasing the “power” of statistical tests, as dis-
cussed in appendix B. 

(False-positive and false-negative errors are sometimes 
called “Type I” and “Type II” errors respectively. However, 
this terminology is weak and is confusing for beginners be-
cause it has no descriptive content.) 

If (through a low p-value or through some other reasona-
ble approach) we find good evidence of a relationship be-
tween variables in appropriate research data, then we can 
study the data further to determine the specifications of the 
putative relationship, especially the specifications of the com-
plete form of the model equation for the relationship. Then we 
can publish a report about the specifications of the apparent 
relationship we have discovered. Then, assuming our conclu-
sions are correct, we or others can use the knowledge of the 
relationship to accurately predict or control the values of the 
response variable in new entities from the population. 

The modern use of the p-value to detect relationships be-
tween variables is an amalgamation and an evolution of the 
work of John Arbuthnot (1710), Daniel Bernoulli (1734), Karl 
Pearson (1900, 1904), William Sealy Gosset (1908), Ronald 
Aylmer Fisher (1925, 1935), and coauthors Jerzy Neyman 
and Egon Sharpe Pearson (1928, 1933a, 1933b). Modern 
views of statistical hypothesis testing and statistical inference 
are discussed by Casella and Berger (2002), Lehmann and 
Romano (2005), and Cox (2006). 

3.4. Generalizations 

A relationship between variables is one type of “effect” 
that we can study in scientific research data. More generally, 

hypothesis tests can test the question of whether some general 
parameter or test statistic (not necessarily indicative of a rela-
tionship between variables) that is computed from the data is 
significantly different from the relevant null value, which is a 
more general type of effect. For generality and brevity, this 
paper sometimes uses the term “effect”. However, typically 
in a scientific research project we can view an effect as re-
flecting a particular relationship between variables. 

The preceding ideas suggest the function of the p-value in 
scientific research: The p-value is (in the absence of a reason-
able alternative explanation) a reasonable objective measure 
of the weight of evidence that we have successfully observed 
a real relationship between the variables (or a real effect) in 
the entities in the population—a measure of the weight or 
strength of evidence that we have in favor of rejecting the as-
sociated null hypothesis (Fisher, 1973, p. 80). In other words, 
the p-value is a measure of the weight of evidence that the 
research hypothesis under study is true. In the absence of a 
reasonable alternative explanation, the lower the p-value be-
low the critical p-value, the greater the weight of evidence that 
the associated research hypothesis is true and therefore the 
greater the weight of evidence that the associated effect is 
real. 

Some thoughtful readers who are familiar with the statis-
tical two-sample t-test may sensibly wonder whether this test 
is a test for evidence of the existence of a relationship between 
variables. This question arises because the t-test is often char-
acterized as testing for a difference between two groups in the 
group means of some variable, 𝑦. However, it is always pos-
sible and instructive to view the two-sample t-test as testing 
whether a continuous response variable (the variable 𝑦) is re-
lated to a binary predictor variable, 𝑥, which is the variable 
that reflects the conceptual difference between the two 
groups. 

Similarly, the extension of the t-test into analysis of vari-
ance, multiple regression analysis, and the general linear 
model can be easily viewed as testing whether the continuous 
response variable is related to one or more discrete or contin-
uous predictor variables. Similarly, the chi-square test (and 
related tests) of a two-way contingency table can be sensibly 
viewed as a test of whether there is a relationship between the 
discrete row variable and the discrete column variable of the 
table. In general, one of the two variables can be sensibly 
viewed as the response variable and the other can be viewed 
as the predictor variable. These ideas can be easily extended 
to more complicated contingency tables. 

It is noteworthy that the p-value is somewhat “crude” in 
the sense that it makes two types of serious errors—false-pos-
itive errors and false-negative errors. Thus one might wonder 
whether there might be a better way to detect effects—a way 
that would make fewer errors. Unfortunately, all of the other 
measures of the weight of evidence that an effect is real make 
the same or similar errors, as discussed later in this paper. 
And, apparently, no better approaches are possible.  

The fact that the measures of the weight of evidence make 
errors isn’t a bad thing. Rather, the presence of the errors is a 
reflection of the near-optimal compromise that occurs in mod-
ern scientific research between positive results, false-positive 
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errors, negative results, false-negative errors, and research 
costs. 

3.5. The Idea of a Reasonable Alternative 
Explanation  

The preceding discussion refers to the idea of a reasonable 
alternative explanation of a scientific research finding. This 
idea is central in the study of relationships between variables 
in scientific research. This is because finding reasonable al-
ternative explanations helps us to find errors or weaknesses in 
the research, which might have led us to an incorrect conclu-
sion. If we find such errors or weaknesses, we can then ad-
dress them in subsequent research. Also, reasonable alterna-
tive explanations of research findings sometimes lead us to 
unexpected insights, which lead to new knowledge. 

In view of the importance of reasonable alternative expla-
nations, diligent researchers do their best to design their re-
search projects to eliminate the possibility that such explana-
tions will arise. For example, medical researchers routinely 
use placebo control groups and they use double-blinding in 
clinical research to eliminate two reasonable alternative ex-
planations that generally arise if the two procedures aren’t 
used. And diligent researchers spend significant amounts of 
time trying to think of reasonable alternative explanations of 
both their own research findings and the research findings of 
others before they will trust a conclusion derived from scien-
tific research data.  

The notion of a reasonable alternative explanation is a 
completely general idea. That is, any explanation whatever 
can be used as an alternative explanation of a research finding 
as long as the explanation is “reasonable”. This includes in-
novative unusual explanations, provided only that they are 
reasonable. The relevant scientific community decides 
through consensus what is reasonable and what isn’t, some-
times after much debate. 

 Unfortunately, many people who aren’t experienced with 
scientific research are unaware of the possibility of reasonable 
alternative explanations and they think that p-values (or other 
measures of the weight of evidence) make definitive decisions 
about whether an effect is real. People may think this way be-
cause it would indeed be convenient if p-values could some-
how make correct decisions for us. 

Of course, p-values can’t possibly make decisions because 
they take no account of the possibility of a reasonable alter-
native explanations of a research finding. Such an explanation 
might explain why a p-value is low, but without the need to 
reject the null hypothesis. Also, it is always possible that a 
low p-value merely reflects a fluke in the data (though the 
lower the p-value, the less the chance of a fluke). The mis-
taken belief that p-values make decisions reflects a fundamen-
tal misunderstanding of the operation of scientific research.  

For example, reflecting a common view, Bayarri, Benja-
min, Berger, and Sellke (2016, p. 92) write: 

Rejecting the null hypothesis at the 0.05 signifi-
cance threshold is typically taken to be sufficient 
evidence to accept the alternative [i.e., research] 
hypothesis. 

They go on to say that this reasoning is erroneous for at least 
two reasons, and they discuss the two (Bayesian) reasons they 
have in mind. But they don’t say that the reasoning is errone-
ous because it omits the key point that there must be no rea-
sonable alternative explanation for a low p-value before it can 
be viewed as “sufficient evidence” to accept the research hy-
pothesis. Arguably, it isn’t permissible to omit this point be-
cause omitting it implicitly supports the fundamentally incor-
rect idea that p-values (and parallel Bayes factors) make de-
cisions. 

Only humans (or computers with more sophisticated algo-
rithms than mere p-values) can make sensible decisions (after 
carefully evaluating the possibility of alternative explana-
tions). But p-values (and other reasonable approaches) can 
help. 

3.6. Using Replication to Eliminate False-Positive 
Errors  

As noted in section 3.3, false-positive errors can lead to a 
substantial waste of resources. Therefore, detection of false-
positive errors is important in scientific research. And the 
methods for detecting and eliminating false-positive errors 
play an important role in the chain of logic of scientific re-
search. Therefore, let us consider how researchers detect and 
eliminate false-positive errors.  

Reasonable alternative explanations of research findings 
can be subtle. This means that if we find good evidence of a 
relationship between variables, and if we can’t find a reason-
able alternative explanation for the finding, then this doesn’t 
imply that no such explanation exists. That is, it doesn’t imply 
that we aren’t making a false-positive error.  

Thus for any positive research finding there may be a cor-
rect alternative explanation for the finding, but we don’t (yet) 
know the explanation. We may not know the explanation be-
cause we haven’t yet discovered the explanation or because 
the finding arose through mere chance. In either case, if we 
accept the finding, we will be making a false-positive error. 
False-positive errors occur surprisingly often in some areas of 
scientific research, as illustrated in appendix B.11. 

The possibility of false-positive errors leads careful re-
searchers to never claim that their research results “prove” 
something. Similarly, careful researchers never claim that 
they have “discovered” something. Instead, we say that the 
results “suggest” that some conclusion might be drawn. This 
approach reminds us about the possibility of a false-positive 
error. 

False-positive errors are easy to identify and eliminate. 
We identify false-positive errors in scientific research through 
subsequent “replicating” research (ideally performed by an-
other independent researcher) in which we attempt to find in-
dependent evidence of the effect under study using a new 
sample of entities from the population. 

Researchers invariably perform appropriate replicating re-
search if a newly discovered relationship between variables is 
important. If proper replicating research successfully repli-
cates a research finding, this greatly reduces the chance that 
the finding is a false-positive error. In contrast, if a research 
project fails to replicate an earlier research finding, then this 
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doesn’t prove that the earlier finding is incorrect, but (depend-
ing on the rigor of the “failing” research) it casts doubt.  

The number of successful replications required to satisfy 
a given research community about the truth of a given re-
search hypothesis depends (in an informal way) on the origi-
nal believability of the hypothesis in the community and de-
pends on the quality of the work supporting the hypothesis—
less believable hypotheses need more successful replications 
before they will be accepted. And carefully performed and 
carefully described work needs fewer replications before it 
will be accepted. 

Consider an instructive extreme example: Darrell Bem, an 
emeritus professor of psychology at Cornell University, found 
fairly good evidence of extrasensory perception (ESP) in 
eight different experiments, which he reported in a respected 
psychological journal (2011). However, because the existence 
of ESP seems highly unlikely, many readers of his report sus-
pect that the report is reporting false-positive errors. But 
Bem’s research is quite rigorous, so it is difficult to think of a 
possible reasonable alternative explanation to explain why the 
research might reflect false-positive errors. Also, it seems un-
likely that the results of all eight experiments are flukes be-
cause that is statistically unlikely. Also, it seems unlikely that 
Bem’s results reflect scientific fraud because Bem is highly 
experienced, so he knows the substantial consequences of 
fraud.  

Bem’s results are certainly thought-provoking. However, 
they don’t imply that we have to believe that ESP exists. In-
stead, as with all new scientific research, experienced re-
searchers won’t believe Bem’s results until (if ever) the re-
sults are successfully replicated. Bem himself stresses the im-
portance of replication of his results in a subsection of his pa-
per (2011) titled “Issues of Replication”. And he offers “rep-
lication packages” with detailed information to make it easier 
for other researchers to duplicate his research to replicate his 
results.  

To date, it appears that nobody has unequivocally repli-
cated Bem’s results although, in view of the substantial rami-
fications of discovering that ESP is real, several researchers 
have tried. (An up-to-date list of reports of research that has 
attempted to replicate Bem’s research can be found by search-
ing the Science Citation Index or Scopus for journal articles 
that cite Bem’s article. It is also sensible to search the web for 
reports of replication attempts because reports of failures to 
replicate a positive result are less likely to be accepted for 
publication in a scientific journal, but will be published on the 
web if deemed important, as discussed in appendix J.)  

The fact that apparently nobody has unequivocally repli-
cated Bem’s results suggests that his research is an instructive 
example of scientific knowledge accruing at its normal slow 
pace, with false-positive errors being weeded out when no 
successful unequivocal replications are reported. And we may 
never know why Bem’s research made what appear to be eight 
false-positive errors. But, although the cause of the (apparent) 
false-positive errors is interesting, it is less important, and the 
important result is that there is presently no replicable evi-
dence that ESP exists.  

Of course, for completeness, it is possible that some day 
somebody will find a way to reliably replicate Bem’s results. 

For example, some researcher may discover that there are cer-
tain natural “fields” (e.g., magnetic fields) in Bem’s labora-
tory that must be present to enable ESP. And he or she may 
discover that Bem’s results can be replicated in any laboratory 
provided that the appropriate fields are present. This discov-
ery will open a new world of knowledge through ESP. This 
discovery is entirely possible, although most of us think it is 
unlikely. And we suspect that Bem’s results are false-positive 
errors with a logical explanation, but that explanation is pres-
ently unknown (and may be unknown for eternity). Time may 
tell. 

3.7. The Asymmetry of Statistical Hypothesis 
Testing 

In scientific research we can never conclude that a partic-
ular null hypothesis is definitely exactly true. For example, we 
can never conclude that ESP is definitely exactly impossible. 
So experienced researchers never “accept” a null hypothesis. 

However, we assume that a given null hypothesis is true 
until (if ever) someone proves otherwise because that is a sen-
sible parsimonious way to begin. But even if we have abso-
lutely no evidence that a given null hypothesis is false, we 
can’t therefore conclude that this null hypothesis is definitely 
true. This is because it is always possible that the effect of 
interest exists in the population, but the effect is weak, so we 
haven’t yet successfully detected it. But researchers will reli-
ably detect the effect with an improved research approach 
sometime in the future. 

In a related idea, some researchers and statisticians believe 
that the null hypothesis is never exactly true in empirical re-
search (Berkson 1938; Bakan 1966; Colquhoun 1971, p. 95; 
Tukey 1989, p. 176, 1991, p. 100; Cohen, 1994, p. 1000; 
Nickerson 2000, p. 263). However, this belief is speculative 
because it can’t be empirically confirmed. This is because it 
isn’t possible to study every null hypothesis in the universe 
and somehow confirm that they are all false.  

Rao and Lovric (2016) attempt to prove analytically that 
every null hypothesis is false. However, their proof is tenuous 
due to the tenuous links between the set of analytical premises 
they use and the real world. 

Furthermore, despite some researchers’ belief to the con-
trary, some null hypotheses are probably exactly true in na-
ture. For example, many readers will agree that there is almost 
certainly no direct relationship in people between carrying a 
“lucky” coin and having good luck. (There may be an indirect 
relationship for some people in the sense that believing in a 
coin causes them to positively pursue more opportunities, 
which leads them to better “luck”.) So in this example the null 
hypothesis (that there is no direct relationship in people be-
tween carrying a certain coin and good luck for them) is prob-
ably absolutely true.  

But again, we can’t know with certainty that the “lucky 
coin” null hypothesis is true. And it is conceivable (though 
most of us think it highly unlikely) that a person might obtain 
a small amount of (real) extra good fortune if he or she regu-
larly carries a lucky coin. That is, it conceivable that some 
“superstitious” people have actually correctly observed this 
(real) relationship between variables—a relationship that the 
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rest of us think doesn’t exist. And these “superstitious” people 
wisely use their knowledge of the relationship to increase 
their good luck (by carrying lucky coins).  

As scientists, we assume that anything (even a truly lucky 
coin) is possible because we can learn more if our minds are 
open to any logically possible hypothesis. But we also always 
assume that the relevant null hypothesis is true until someone 
convincingly demonstrates otherwise. Thus we can easily en-
tertain the idea of a lucky coin, but we assume that such coins 
don’t work until (if ever) someone provides unequivocal evi-
dence to the contrary. 

The lucky coin example illustrates the asymmetry of sta-
tistical hypothesis testing. That is, we can never use empirical 
research to prove that a null hypothesis is true. However, we 
can use empirical research to prove (beyond a reasonable 
doubt) that a given null hypothesis is false (assuming, of 
course, that the particular null hypothesis actually is false). 

The fact that we can never know whether a null hypothesis 
is exactly true is arguably never a practical problem in scien-
tific research. This is because researchers generally aren’t in-
terested in whether a particular null hypothesis is exactly true. 
And we are generally only interested in conclusively demon-
strating that the particular null hypothesis of interest is false. 
This is because the null hypothesis is merely an empty starting 
point that we hope to escape from. 

If we can show that a null hypothesis about a relationship 
between variables is clearly false, then we can use the 
knowledge of the relationship to predict or control the values 
of the response variable in new entities from the population, 
which is often useful. But if we can’t show that a null hypoth-
esis is clearly false, then it is an error to act as if the relation-
ship or effect is present because we might be deceiving our-
selves. Hypothesis tests enable us to determine (using a rea-
sonable convention, and in the absence of a reasonable alter-
native explanation) if the data provide enough evidence to jus-
tify believing that the null hypothesis is false, and therefore 
the relevant research hypothesis (generally about a relation-
ship between variables) is true. 

3.8. How Researchers View the p-Value  

It is helpful to consider how scientific researchers (as op-
posed to statisticians) view the p-value. Many researchers will 
agree that you can interpret the p-value with the following 
simple rules:  

If the p-value for a sought-after effect is less 
than 0.05, then you have found reasonable evi-
dence of the effect in the data. And if your finding 
is interesting enough, clearly described, and has no 
obvious errors, then a report of the finding will be 
accepted for publication in a relevant scientific 
journal (which is what a researcher wants to ad-
vance human knowledge and to advance his or her 
career).  

In contrast, if the p-value is less than 0.01, then 
you have found stronger evidence of the sought-
after effect. In that case, if your finding is highly 
interesting, clearly described, and has no obvious 

errors, then the report of the finding will be ac-
cepted for publication in a relevant higher-prestige 
journal. 

The preceding rules hide the following important ideas in 
the concept of “no obvious errors”: (a) the idea of a reasonable 
alternative explanation, (b) the idea of a false-positive error, 
and (c) the idea that we must confirm that the technical as-
sumptions underlying the p-value are adequately satisfied be-
fore the p-value can be trusted. Furthermore, the rules don’t 
explain what the p-value measures although (arguably) that is 
less important. And although the rules hide some important 
ideas, they are essentially correct and are easy for a researcher 
to understand.  

Of course, some journals may use different critical p-val-
ues from 0.05 and 0.01, and some journals may use different 
criteria altogether. But the intent is invariably the same—to 
only publish research reports that have sufficient weight of 
evidence that the discovered effect is real. 

Arguably, it isn’t necessary for researchers (as opposed to 
statisticians) to know exactly what the p-value measures 
(which is complicated) provided that they understand the 
above rules. This is because it is the function of the p-value 
that is important—to determine whether we have (in the ab-
sence of a reasonable alternative explanation) sufficient evi-
dence of the existence of a relationship between variables (or 
other effect) in the population of entities under study.  

The p-value enables us to determine whether we have suf-
ficient evidence that the effect under study is real. The p-value 
is based on a set of rigorous ideas in mathematical statistics. 
But from the point of view of a researcher, the mathematical 
details underlying of these ideas are less important, and the 
complexity of these details tends to obscure the function. 

3.9. Further Discussion 

The preceding subsections discuss how the p-value helps 
us to determine whether or a parameter or test statistic is 
meaningfully different from the relevant null value, which en-
ables us to determine whether a relationship exists between 
variables. Section 7 discusses seven alternative approaches to 
perform the same function. Appendix B expands the ideas in 
the present section, including (a) further explanation about 
what the p-value measures, (b) further discussion of false-pos-
itive and false-negative errors, and (c) discussion of the cur-
rent controversy about the publication of false-positive errors 
in the scientific research literature (leading to the “replication 
crisis” in some fields of scientific research). Appendix C dis-
cusses whether there is an optimal critical value for a test sta-
tistic. Appendix D discusses an approach to teaching p-value 
concepts to beginners. 

4.  Do We Need a Measure of the Weight of Evi-
dence that an Effect Is Real? 

The fact that we can sensibly view the p-value as a meas-
ure of the weight of evidence leads immediately to an im-
portant question: Do we need a measure of the weight of evi-
dence that an effect (e.g., a relationship between variables) 
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observed in scientific research is real in the entities in a pop-
ulation? Could scientific research somehow get by without 
such a measure? 

Arguably, we need an objective measure of the weight of 
evidence that an effect is real. This is because if we don’t use 
some measure of the weight of evidence, then we can’t be 
confident that any relationship between variables (or other ef-
fect) that we have observed in research data is a real (i.e., re-
producible) effect in the population and doesn’t merely reflect 
random noise in the sample data. Researchers don’t want to 
believe that a relationship exists between variables if the evi-
dence for the relationship could merely be a reflection of 
noise. So we need a way to distinguish the signal of a rela-
tionship between variables from the inescapable noise in the 
data. 

For example, medical researchers studying the effect of a 
new drug on patients need a reliable objective measure of the 
weight of evidence that the observed effect of the drug is a 
real effect in the relevant population of patients, and isn’t 
merely an effect of random variation in the sample—i.e., an 
effect that won’t be observed in new patients from the popu-
lation. This is because medical researchers don’t want to rec-
ommend an ineffective drug because that would put patients’ 
health at increased risk and would waste patients’ resources. 

We generally can’t judge whether an effect is real on the 
basis of simple intuition because science tries to be as objec-
tive as possible because intuition is unreliable. So, in general, 
we need an objective measure of the weight of evidence that 
an effect observed in scientific research is a real effect in the 
entities in the population under study. 

An exception to the preceding point is that in some spe-
cific cases, especially in the physical sciences, we don’t need 
a measure of the weight of the evidence that an observed ef-
fect is real because the evidence of the existence of the effect 
is so obvious from a graph of the data that there is no doubt 
that the effect is real. (Of course, in such cases, if we compute 
the relevant p-value, it will be extremely low.) However, 
modern scientific research generally operates at the leading 
edge of knowledge where new relationships between varia-
bles and other effects are often weak or are complicated and 
are thus hard to detect. Therefore, we generally need an ob-
jective measure of the weight of evidence to assist us to reli-
ably detect real effects. 

The measure of the weight of evidence that we use in sci-
entific research might be the p-value. But it might also be 
some other sensible measure of the weight of evidence, as dis-
cussed below.  

Appendix E discusses another important exception to the 
idea that we need a measure of the weight of evidence that an 
effect observed in scientific research is real when we study a 
relationship between variables. 

5. The Existence of an Effect Versus the Size of an 
Effect Versus the Importance of an Effect 

It is important to distinguish between (a) determining 
whether an effect exists in a population, (b) determining the 
size (or strength) of an effect in the population, and (c) deter-
mining the importance of an effect. The p-value helps us to 

determine whether an effect exists, but it doesn’t directly 
speak to the size (strength) or importance of the effect. 

For example, in a large properly designed medical exper-
iment to study a new drug we might obtain a very low p-value 
and therefore obtain very good evidence that the drug has a 
positive effect on the patients in the relevant population. But 
we might also find that the size of the effect of the drug on the 
patients is quite small—so small that the effect is of no prac-
tical significance to the patients and thus isn’t worth the cost 
and side effects of using the drug. It is crucial in scientific 
research to distinguish statistical significance (indicating 
whether we have sufficient evidence that the effect under 
study is real in the first place) from practical significance (in-
dicating whether the effect, if real, is strong enough or im-
portant enough to be useful). 

If we have confirmed (e.g., through a low p-value) that an 
effect is real in the population, then various measures of the 
size (or strength) of an effect are available, depending on the 
types of variables under consideration and depending on other 
features of the research. For example, the correlation coeffi-
cient is a measure of the strength of the straight-line relation-
ship between a pair of continuous variables.  

In experimental research a straightforward and easy-to-
understand measure of the size of an effect is the simple 
change in the expected value of the response variable that oc-
curs if a predictor variable is manipulated to have two relevant 
different values. For example, a medical researcher might re-
port that a daily dose of 125 mg of a certain new blood pres-
sure drug (versus a zero dose) lowers the systolic blood pres-
sure of a certain type of patient by 25 mm on average. 

Similarly, if we have confirmed that an effect is real, then 
the importance of an effect is obviously of interest. For we 
may find good evidence of a relationship between variables 
and we may find that the relationship is a strong relationship. 
But we may also recognize that the relationship is unim-
portant in the sense that it has no practical or theoretical ram-
ifications. Then the knowledge of the relationship between the 
variables is obviously less useful, and the research to study 
the relationship may even have been a waste of time. Of 
course, we can avoid this disappointing outcome through 
careful research planning in which we establish that the ex-
pected effect will be important or at least useful if we success-
fully discover it. 

We determine the importance of a relationship (or other 
effect) by determining its social, theoretical, or commercial 
implications. For example, the discovery by Jonas Salk of the 
relationship between his polio vaccine and childhood polio 
was highly important because it had immediate far-ranging 
implications for eliminating childhood polio. 

Of course, if we haven’t confirmed that an effect is real in 
the population, then it doesn’t make sense to consider the 
strength of the effect or to consider the importance of the ef-
fect. We must first confirm that an effect is real before it is 
sensible to consider its other ramifications. 
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6. Problems with the p-Value 
Although the p-value is a reasonable measure of the 

weight of evidence that an effect it is real, it is subject to sev-
eral serious problems. These problems lead some researchers 
to question the usefulness of p-values. This section summa-
rizes the main problems. 

Section 3.3 gives a standard definition of the p-value. This 
definition is a conditional definition, with three complicated 
conditions. This is highly confusing to beginners, so p-values 
are often misunderstood. 

Furthermore, as reflected in the definition, the p-value re-
flects a probability that pertains to the situation in which the 
null hypothesis is true. But researchers are almost always in-
terested in rejecting the null hypothesis—in demonstrating 
that the relevant null hypothesis is false. Thus the logic of the 
p-value is roundabout, which is also highly confusing to be-
ginners. 

If we use p-values to detect relationships between varia-
bles, then the p-values sometimes make false-positive and 
false-negative errors. These inescapable (but understandable 
and controllable) errors add to the complexity of the p-value. 

Some beginners mistakenly think that the p-value is the 
probability that the associated null hypothesis is true. This 
idea is intuitively sensible, but is incorrect. This error isn’t 
directly a serious problem because, for the same critical p-
value, the error leads to the same conclusions as we obtain 
under the correct interpretation of the p-value. But indirectly 
this error is a potential source of confusion because it reflects 
a fundamental misunderstanding of the logic of hypothesis 
testing. 

Some beginners mistakenly think that the critical p-value 
is the overall fraction of the time that a research project will 
make a false-positive error if this critical value is consistently 
used. The correct statement is that the critical p-value is the 
fraction of the time that a research project will make a false-
positive error in cases when the null hypothesis is true (and if 
the assumptions underlying the p-value are adequately satis-
fied). 

Researchers are generally eager to obtain a low p-value 
for their main research hypotheses because a low p-value is a 
widely accepted necessary condition for publication of a new 
scientific discovery in most statistically oriented scientific 
journals, as discussed in appendix B.8. Researchers’ eager-
ness to obtain a low p-value together with the complexity of 
the p-value makes it prone to usage errors (such as the inter-
related errors of cherry picking, data dredging, data hacking, 
and p-hacking). The possibility of these usage errors (which 
researchers sometimes commit unconsciously) adds to the 
complexity of the p-value. 

As discussed in section 3.5, some people are unaware of 
the possibility of reasonable alternative explanations of a low 
p-value and therefore they mistakenly think that p-values 
make decisions. This thinking leads to further confusion or to 
outright errors. 

As discussed in section 5, beginners sometimes confuse 
(a) the complicated concept of statistical significance associ-

ated with the p-value and (b) the equally important but inde-
pendent concepts of practical or theoretical significance, 
which depend on the size and importance of the effect. 

The preceding problems with the p-value (and other prob-
lems) have led to much confusion and controversy about the 
p-value, as noted by Wasserstein and Lazar (2016). 

7. Alternatives to the p-Value 
Section 4 concludes that we need a measure of the weight 

of evidence that an effect observed in scientific research is 
real. But section 6 discusses how the p-value is subject to var-
ious serious problems. These problems have led to a sense 
among some researchers and statisticians that the p-value is 
passé (Morrison and Henkel, 1970; Kline, 2004; Ziliak and 
McCloskey, 2008; McGrayne, 2011; Nuzzo, 2014; Trafimow 
and Marks, 2015; Hubbard, 2016). 

In view of the problems with the p-value, statisticians 
have invented seven sensible alternative measures of the 
weight of evidence that an effect observed in scientific re-
search is real. Like the p-value, these measures all use varia-
tions of the approach of checking whether the estimated value 
of the relevant parameter is “meaningfully” different from the 
null value. These measures are the t-statistic, the confidence 
interval, the likelihood ratio, the Bayes factor, the posterior 
probability that the null hypothesis is true, the D-value, and 
various information criteria. Appendix F compares the p-
value with the seven measures. These comparisons are a key 
part of the main argument of this paper. However, the discus-
sion is too long for the body of the paper, so a summary is 
given here. 

Appendix F observes that the various measures, including 
the p-value, are (in situations when they are relevant) all mon-
otonically related to each other in value. (This is because, with 
other relevant factors held constant, the measures are all mon-
otonically related in value to the effect size.) These monotonic 
relationships between the values of the measures imply that 
in almost any given research situation, all the applicable 
measures can be calibrated with each other to have equivalent 
critical values. This calibration will cause the various 
measures to exhibit exactly the same behavior in determining 
whether we have enough evidence (in the absence of a rea-
sonable alternative explanation) to tentatively reject the rele-
vant null hypothesis.  

The fact that the various measures of the weight of evi-
dence can be calibrated with each other to show the same be-
havior implies that the seven alternative measures are (when 
relevant) usually functionally equivalent to the p-value in op-
eration and in high-level output if equivalent critical values 
are used. Functionally, the only difference among the eight 
measures is that they have different scales. 

The appendix notes that the seven alternative measures are 
subject to most of the same problems as the p-value. In par-
ticular, if we use any of the other measures to measure the 
weight of evidence (with actual or virtual critical values), then 
that measure is (with rare but important differences) prone to 
make the same false-positive errors, false-negative errors, and 
usage errors (cherry picking, etc.) that occur with the p-value. 
In addition, each measure is subject to various other problems. 
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For each alternative measure, the appendix presents an ar-
gument why the p-value is superior to the measure in terms 
two or three of five criteria, as summarized in table 1. 

Table 1. Comparisons between the p-value and the seven alternative measures of the weight of evidence that an 
effect observed in scientific research is real. 

 The p-value is 
Measure of weight of evidence 

 

more 
informative 

easier to 
understand 

more 
general 

less 
arbitrary 

more 
powerful 

t-statistic  X  = = 

confidence interval    = = 

likelihood ratio   = = = 

Bayes factor   =  =* 

posterior “probability” null hypothesis is true   =  =* 

D-value  X  = =  
information-criterion methods    = = 

* The Bayes factor and the posterior probability that the null hypothesis is true are occasionally more powerful 
than the p-value, as discussed in sections 4 and 5 of appendix F. 

A check mark in a cell of the table indicates that the p-
value is superior to the measure associated with the row in 
terms of the attribute associated with the column. For exam-
ple, the check mark in the “more informative” column for the 
t-statistic implies that the p-value is more informative than the 
t-statistic. In contrast, an X in a cell indicates that the p-value 
is inferior to the measure associated with the row in terms of 
the attribute. For example, the X in “easier to understand” col-
umn for the t-statistic indicates that the p-value is harder to 
understand than the t-statistic. An equals sign in a cell indi-
cates that the p-value and the measure associated with the row 
are roughly equivalent on the attribute associated with the col-
umn. The information in the table reflects generalizations, and 
exceptions occur in a few less frequent special cases. 

The “more informative” column of the table indicates that 
the p-value is (arguably) more informative than each of the 
other measures. The p-value is more informative because the 
critical p-value gives us a direct estimate of the rate of occur-
rence of false-positive errors in research in cases when the 
null hypothesis is true (assuming that the underlying assump-
tions of the p-value are adequately satisfied). The rate of oc-
currence of false-positive errors is important because these er-
rors are guaranteed to occur some of the time in scientific re-
search, are costly, and their frequency of occurrence is con-
trollable (through the choice of the critical p-value).  

Some statisticians will disagree that the p-value is more 
informative than the other approaches and they will believe 
that another measure of the weight of evidence is more in-
formative than the p-value. Of course, this depends on how 
much weight a person puts on the importance of controlling 
false-positive errors. This paper takes the view that control-
ling false-positive errors is highly important because these er-
rors lead to a waste of resources. Therefore, both the p-value 
and the critical p-value are important information that 

shouldn’t be hidden behind one of the other measures of the 
weight of evidence. 

Appendix F also considers some theoretical arguments 
why one of the measures might be preferred to the others, but 
observes that most of the theoretical arguments have flaws or 
weaknesses. 

Appendix F concludes that the p-value is superior to each 
of the other measures of the weight of evidence that an effect 
observed in scientific research is real. Curious readers are en-
couraged to read the appendix. 

8. Conclusions 
Many scientific research projects study relationships be-

tween variables as a means to accurate prediction or control 
of the values of the response variable in new entities from the 
studied population. In such research we need an efficient 
measure of the weight of evidence that an effect (such as a 
relationship between variables) observed in research data for 
a sample is a real effect in the population of entities behind 
the sample. We need such a measure to avoid deceiving our-
selves and others about an effect that may be either (a) non-
existent or (b) so weak that we can’t (presently) reliably ob-
serve it, and therefore it is in effect non-existent. This is im-
portant because we wish to avoid wasting resources on effects 
observed in scientific research that aren’t real. 

A low p-value (or another sensible indicator of sufficient 
weight of evidence) is good evidence that an effect is real only 
if there is no reasonable alternative explanation for this evi-
dence. Some people are unaware of this point and they there-
fore erroneously think that a measure of the weight of evi-
dence (such as a p-value) decides for us whether an effect is 
real, which is a fundamental misunderstanding. 

All of the measures of the weight of evidence are prone to 
various problems and all are somewhat complicated. But (as 



The p-value is best to detect effects  12. 

discussed in appendix F) in comparison to the p-value, the 
other available measures of the weight of evidence are less 
informative. And the other available measures are one or 
more of (a) harder to understand, (b) less general, (c) more 
arbitrary, or (d) less powerful. Thus, arguably, the p-value is 
the best available measure of the weight of evidence that an 
effect (typically a relationship between variables) observed in 
scientific research is real in the entities in the population of 
entities under study. 

If we find good evidence of the existence of a relationship 
between variables, then we can derive an appropriate model 
equation for the relationship. If we do everything properly, 
and if the analysis hasn’t inadvertently made a false-positive 
error, then we (or others) can use the equation to reliably pre-
dict or possibly control the values of the response variable in 
new entities from the population. This ability is useful in 
many areas of life. 

Supplementary material. 
The supplementary material contains appendices A 

through M. 
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Appendix A: Exceptions to the View that Research 
Projects Study Relationships Between Variables 

The body of this paper says that we can view most scien-
tific research projects that collect and study data as studying 
relationships between variables in data tables, with each entity 
in the sample associated with one row of the table and with 
each variable associated with one column. This appendix dis-
cusses research projects that don’t directly fit into this pattern. 

Sometimes in a real data table each entity is associated 
with multiple rows, and sometimes the same variable appears 
in multiple columns. But (without losing any data) we can eas-
ily reorganize the table (by appropriately adding or removing 
rows and columns) so that each row reflects a unique entity in 
a sample and each column reflects a unique variable. Alterna-
tively, we can easily adjust our identification of the entities 
and the variables under study so that each row of the table 
reflects a unique entity and each column reflects a unique var-
iable. 

Also, some cells in a data table in real scientific research 
may not contain the correct variable values, but instead will 
contain incorrect values due to a measurement or transcription 
errors (which, of course, we strive to eliminate). Also, some 
cells in a table may not contain the actual variable values, but 
instead will contain “missing” values, implying that these val-
ues are (for some reason) unavailable. 

Also, sometimes the data for a research project aren’t in a 
single table, but are in multiple tables. However, in this case, 
the multiple tables are invariably joined together (at least in 
effect) into a standard single table before the data analysis be-
gins. 

In a degenerate case, we may study a single variable (col-
umn) in a data table in isolation. In this case, we have a re-
sponse variable and zero predictor variables, which is logi-
cally and mathematically the limiting case of a relationship 
between variables when the number of predictor variables is 
reduced to zero. 

In a second degenerate case, we may study a single entity 
(row) in a data table in isolation because we are unable to ob-
tain multiple rows for the table due to a lack of available data. 
This case often arises in the historical sciences such as archae-
ology, paleontology, and evolutionary biology, which must 
often work with a sample size of one. This case also arises in 
some branches of the social sciences, such as in some areas of 
anthropology (when the main entity of study may be a single 
society) and in traditional clinical psychiatry (when the main 
entity of study is usually a single psychiatric patient). 

In another special case, we have no response variable and 
we merely study a set of several predictor variables in a data 
table. Our goal is to find a way to organize the variables (col-
umns of the table) into groups (super-variables, so to speak), 
as in exploratory factor analysis and principal components 
analysis. For example, this approach is often used to organize 
the set of questions (technically “items”) on a psychological 
test into new super-variables that are called “scales”, with the 
value of the scale for an entity being a weighted sum of the 
scores for the entity on two or more highly correlated items. 

Similarly, in another special case, we have no response 
variable, and we use the predictor variables in the table to en-
able us to organize the entities (rows of the table) into groups 
of similar entities according to the values of the variables for 
the entities, as in cluster analysis. For example, this approach 
may be used in targeted advertising, enabling a company to 
divide its customers into groups of similar customers on the 
basis of earlier purchases and webpage visits and then tailor 
the advertising presented to each customer according to his or 
her group membership, such as automobile accessories for 
one group and handbags for another. 

The preceding set of exceptions isn’t exhaustive, and other 
exceptions to the view that research projects study the rela-
tionship between (a) one or more predictor variables and (b) 
a single response variable also exist (e.g., research projects 
that use multivariate analysis, canonical correlation analysis, 
path analysis, and meta-analysis). However, (empirical) sci-
entific research projects can invariably be viewed as studying 
the values of variables, and the exceptions can often be rea-
sonably viewed as special cases of the study of variables and 
relationships between variables. 

Appendix B: Details About Hypothesis Testing with 
p-Values to Detect Relationships 

Section 3 in the body of this paper presents a high-level 
discussion of the operation of statistical hypothesis testing 
with p-values. The present appendix expands the ideas for two 
audiences: (a) for less-experienced readers by providing more 
information about the details and (b) for more advanced read-
ers by providing an integrated view of important basic issues, 
some of which are contentious. The discussion is a mixture of 
simple statistical ideas and basic ideas of scientific research. 

 This appendix focuses on the first step (after cleaning the 
data) in the study of a relationship between variables, which 
is to determine whether we have good evidence that a rela-
tionship exists between the variables of interest in the entities 
in the population. Of course, we are interested in determining 
whether a relationship exists because if we can find good ev-
idence that a particular relationship between variables of in-
terest exists then, in the second step, we can study details 
about the relationship. That is, we can study how we might 
use knowledge of the relationship for accurate prediction or 
control.  

B.1. The Research and Null Hypotheses 

We can use hypothesis testing to determine whether we 
have good evidence that a relationship exists between varia-
bles. We perform a hypothesis test by using an appropriate 
procedure to examine the data in a data table to look for con-
vincing evidence that a particular relationship of interest ex-
ists. 

As noted in the body of this paper, the standard approach 
to hypothesis testing begins by partitioning the possibilities 
about the phenomenon under study into two mutually exclu-
sive and exhaustive hypotheses—the research hypothesis and 
the null hypothesis. The research hypothesis describes a gen-
eral version of the phenomenon that we believe exists in the 
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population, but nobody has yet properly observed. In contrast, 
the null hypothesis describes the “null” situation—the situa-
tion in which the phenomenon that is under study doesn’t ex-
ist in the population. We perform a “hypothesis test” of ap-
propriate research data to help us decide which of the two hy-
potheses is (likely) true. 

Typically in scientific research the research hypothesis 
states that a relationship between certain variables exists in 
the entities in the population of entities we are studying. But, 
more generally, a research hypothesis can assert the existence 
of something that isn’t a relationship between variables (alt-
hough that it is beyond the present scope). In either case, the 
problem is the same—we need to determine whether we have 
good evidence that the postulated thing in question exists. 

For example, in medical research to test a new drug, the 
research hypothesis says that the drug has an effect on the pa-
tients—a detectable relationship exists in patients between the 
variables “drug dose” and “patient response”, where “patient 
response” is a relevant measure of the wellness or illness of a 
patient. Note how the research hypothesis simply says that the 
drug has an effect on the response variable in the patients, but 
with no details about the effect. In contrast, the null hypothe-
sis says that the studied drug has no effect on the response 
variable in the patients—there is no relationship between the 
amount of the drug and the response variable in the population 
of patients. 

In drug research (as in most scientific research) there is 
invariably a further presumed hypothesis, which is that the 
drug under study has a positive effect on the patients, as op-
posed to a negative effect. This hypothesis is present because 
the goal of drug research isn’t merely to find an effect, but is 
to find a useful positive effect—an effect that makes patients 
better, not worse. This point generalizes to all areas of scien-
tific research—researchers often have a strong preference for 
discovering one type of effect, a “positive” effect, as opposed 
to the opposite “negative” effect because a positive effect will 
have a positive payoff, as opposed to a negative payoff.  

However, the important pragmatic hypothesis that a drug 
has a positive effect is outside the general machinery of hy-
pothesis testing. And standard formal hypothesis testing ig-
nores the researcher’s preference because sometimes when 
we analyze the relevant research data we find good evidence 
of the opposite effect to what we expected. Thus the standard 
conservative form of hypothesis testing is impartial and al-
lows equally for the possibility of an opposite effect. 

As noted in the body, some statisticians and researchers 
refer to the research hypothesis in a scientific research project 
as the “alternative” hypothesis, which is the name that Ney-
man and Pearson used for the hypothesis in their original dis-
cussion of it (1928). The word “alternate” is also sometimes 
used. However, these terms are vague and carry the strong but 
incorrect connotation that the research hypothesis is somehow 
subordinate to the null hypothesis—suggesting that the re-
search hypothesis is somehow unimportant. But researchers 
are almost always interested in demonstrating that their re-
search hypothesis is true, and therefore demonstrating that the 
associated null hypothesis is false. This is because if we find 
good evidence that a new research hypothesis is true, then the 
statement of the hypothesis becomes (after confirmation by 

other researchers) a new scientific fact about the population. 
Thus a given research hypothesis is much more important 
than the associated null hypothesis—the null hypothesis is 
merely a sensible but empty starting point that we hope to es-
cape from. Thus referring to the important research hypothe-
sis as the “alternative hypothesis” or “alternate hypothesis” is 
inappropriate and misleading. 

Similarly, some authors refer to hypothesis testing as “null 
hypothesis significance testing”, often using the acronym 
NHST. This term is arguably inappropriate because it empha-
sizes the relatively unimportant null hypothesis—the hypoth-
esis that we are invariably trying to escape from. Therefore, it 
is arguably more sensible to emphasize that we are attempting 
to show good evidence that the relevant research hypothesis 
is noticeably true, rather than attempting to show that the op-
posing less important null hypothesis is noticeably false. Of 
course, the two approaches in the preceding sentence are log-
ically equivalent, each reflecting the same idea, but with op-
posite terminology. But the research hypothesis—our cher-
ished theory—is much more important than the empty-of-
content null hypothesis. Thus, arguably, the research hypoth-
esis deserves the emphasis. Thus it is sensible to call the pro-
cedure “research hypothesis testing” or simply “(statistical) 
hypothesis testing”. 

The preceding discussion refers to the relationship be-
tween a single predictor variable and a response variable. 
However, as noted in the body, often in as scientific research 
project we have multiple predictor variables. In this case, the 
ideas are the same—we are interested in determining whether 
there is a relationship between (a) one or more of the predictor 
variables and (b) the response variable in the entities in the 
underlying population. And, for each possible relationship be-
tween the variables we will have a specific research hypothe-
sis and a corresponding null hypothesis. We examine the re-
search data to determine which of the multiple hypotheses (if 
any) is or are (likely) true in the entities in the population. 

B.2. The Beginning Assumption that the Null Hy-
pothesis Is True 

As noted in the body, the widely accepted scientific prin-
ciple of parsimony (also called Occam’s or Ockham’s razor) 
tells us to keep things as simple as possible while remaining 
consistent with all the known facts (Baker, 2016). A sensible 
justification of this principle is the rhetorical question: Why 
make things more complicated than need be—why make 
things up that we don’t know are true? Thus we begin the 
study of a new relationship between variables with the formal 
assumption that the associated null hypothesis is true. 

Beginning with the assumption that the null hypothesis is 
true helps us to avoid deceiving ourselves about the existence 
of a relationship between variables that doesn’t exist. Humans 
are prone to believe in relationships between variables that 
don’t exist. This may be because we need a strong belief in 
something to motivate us to study the thing—we need a strong 
belief in the existence of a relationship between variables be-
fore we will study it. (There is no point in studying a relation-
ship if we think it doesn’t exist.) 
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Thus most researchers who study relationships between 
variables strongly believe at the beginning of a research pro-
ject that the relationship between variables they are studying 
exists. However, a certain percentage of the time (possibly 
higher than 50%, depending on the discipline) we are wrong 
and (unfortunately) the relationship between variables we are 
studying doesn’t exist, and the null hypothesis is actually (or 
in effect) true. Thus, by convention, to reduce errors in scien-
tific research, we aren’t allowed to formally believe that a re-
lationship between variables exists until someone has une-
quivocally demonstrated that it exists. 

The preceding paragraph refers to the idea that a null hy-
pothesis may be “in effect” true. This important idea enables 
us to take account of the possibility that a null hypothesis may 
be false, but the associated relationship between variables is 
extremely weak—so weak as to be undetectable in the present 
research. It isn’t possible to distinguish between the case 
when a null hypothesis is precisely true and the case when the 
null hypothesis is false, but it is in effect true (i.e., a relation-
ship between the variables exists, but it is undetectable). The 
inability to distinguish between these cases generally isn’t a 
serious problem because if a relationship between variables is 
so weak that it is undetectable, then it will usually also be so 
weak that it isn’t useful in any reasonable sense. 

(Of course, despite the point in the preceding sentence, we 
would, if possible, always like to know about any weak rela-
tionship between variables. This is because if we know that a 
weak relationship exists, and if this relationship would be im-
portant if it were stronger, then we might be able to perform 
further research to find a way to strengthen it.) 

Summarizing, we begin the study of a new relationship 
between variables with the formal assumption that the null 
hypothesis about the relationship is true. But informally we 
usually strongly believe and hope that our research hypothesis 
is true (because if we can show it is true, this will advance our 
knowledge). 

B.3. Model Equations 

Hypothesis testing uses a sensible mathematical proce-
dure to help us to decide whether we can reject a given null 
hypothesis and (tentatively) conclude that a relationship exists 
between (a) selected predictor variable(s) and (b) the response 
variable in the entities in the population. As noted in the body 
of this paper, the procedure is based on a study of a “model 
equation” of the relationship between the variables. The 
model equation states the mathematical form of the relation-
ship between variables that we believe (hope) exists. 

We can write the general form of a model equation as 
 𝑦 =  𝑓(𝑥) + 𝜀  (1) 
where 𝑦 is the response variable and 𝑥 is the predictor varia-
ble(s). The 𝑥 may symbolize either a single predictor variable 
or a vector of two or more predictor variables. 

(Also, 𝑦 may be a vector, and “multivariate” statistical 
procedures are available to handle the case when the response 
variable is a vector. But this case almost never occurs in real 
scientific research due to the substantial increased complexity 

and due to a general lack of any demonstrable scientific ad-
vantage—it is usually more sensible to study each possible 
response variable on its own.) 

The 𝑓(𝑥) in equation (1) is a mathematical function of 𝑥. 
This function may be any (single-valued) mathematical func-
tion—the choice of the function is at the researcher’s discre-
tion. Of course, a researcher will try to choose a form for 𝑓(𝑥) 
so that it best mimics the true form of the relationship between 
the predictor variable(s), 𝑥, and the response variable, 𝑦, in 
the population. Statistics textbooks discuss approaches to se-
lecting the best function for a model equation. 

If we have derived a model equation properly, then we can 
use it to make predictions. For example, suppose that we have 
derived a specific form of model equation (1) above. And sup-
pose we measure the numeric values 𝑥 of the properties of a 
new entity from the population, and suppose that the specific 
numeric values can be represented symbolically as 𝑥′. Then 
we can reliably predict that the value of 𝑦 for this entity will 
be 𝑓(𝑥′). 

The 𝜀 in equation (1) is the “error” term. It reflects the fact 
that a model equation can almost never predict the value of 𝑦 
perfectly. The 𝜀 represents the difference between the correct 
(measured) value of the response variable for an entity and the 
value of the response variable predicted by 𝑓(𝑥). (In more 
complicated cases 𝜀 can be a sum of two or more error terms 
representing different errors that occur at different levels of 
the analysis.) The error term is viewed as varying “at random” 
from entity to entity in the population, with the “distribution” 
of the values of the term typically being a random normal dis-
tribution. 

If we properly derive a model equation for a particular re-
lationship between variables, then the predictions made by the 
equation for new entities from the population will be good 
predictions in the sense of being more accurate and more pre-
cise than other predictions that don’t take account of the rela-
tionships between the predictor variable(s) and the response 
variable. The increase in accuracy and precision of predic-
tions may be substantial or it may be minimal, depending on 
the strength of the relationship between the variables, and de-
pending on the design of the research project we use to derive 
the equation. 

The general multiple linear regression model equation is a 
good basic example of a model equation of a relationship be-
tween multiple predictor variables and a response variable in 
scientific research. It has the following general form: 
 𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑞𝑥𝑞 +  𝜀 (2) 
where: 

𝑦 is the response variable 
𝑥1, 𝑥2, … , 𝑥𝑞  are the 𝑞 predictor variables 
𝑏0, 𝑏1, … , 𝑏𝑞 are the 𝑞 + 1 “parameters” of the equation, 

which are called the “regression coefficients” in this 
case, and 

𝜀 is the error term of the equation. 
Many other forms of model equation are also available. 

For example, we may use a nonlinear equation, a logistic 
equation, a generalized equation, a cell-means equation, or 
some other form of equation, choosing from the many availa-
ble types of mathematical functions, and choosing whichever 
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form seems most appropriate to model the relationship be-
tween the variables at hand. 

B.4. Parameters of Model Equations 

As noted in the preceding subsection, the 𝑏0, 𝑏1, … , 𝑏𝑞 in 
equation (2) are the 𝑞 + 1 parameters (regression coeffi-
cients) of the equation. Almost all model equations have pa-
rameters, and the parameters are assumed to be fixed num-
bers. As noted in the body of this paper, we can estimate the 
values of the parameters of a model equation through the anal-
ysis of appropriate research data. The numeric values of the 
parameter estimates are important because they help us to de-
tect relationships between the variables and because they help 
to specify the exact form of the model equation. 

It is sensible to conceive of “true” values of the parameters 
of a model equation in the underlying population. The “true” 
value of a parameter of a model equation in the population is 
the theoretical numeric value of the parameter that we would 
estimate if our measuring instruments could measure with 
perfect precision and if we were able to perform the research 
project under study on a sample that includes every entity in 
the population.  

The preceding paragraph implies that the true value of a 
parameter is meaningful (because it is estimable with any 
specified precision if we are prepared to spend sufficient re-
sources). But the paragraph also implies that the exact true 
value of a parameter is generally unknowable because (a) we 
almost never have perfect measuring instruments and (b) we 
almost never have enough resources to study every entity in 
the relevant population. Fortunately, statisticians have discov-
ered methods for estimating parameter values so that (if we 
do everything properly) the estimated values will be as close 
as possible to the true values. 

As noted in the body, statisticians have invented three 
somewhat-related general methods to provide good estimates 
(from appropriate research data) of the true values of the pa-
rameters of a model equation of a relationship between varia-
bles. These methods are the least-squares method, the maxi-
mum-likelihood method, and the Bayesian method. The meth-
ods work by analyzing relevant data in a data table and using 
sensible algorithms to compute optimal estimates of the pa-
rameter values. 

As also noted in the body, if we apply the three methods 
to a given applicable data table using a sensible model equa-
tion, then the methods almost always all give identical or 
highly similar estimates of the values of the parameters of the 
equation. This is because, at root, each method is trying to 
satisfy the same basic goal, which is to correctly estimate the 
“true” values of the parameters of the “true” model equation 
for the studied relationship between variables in the entities 
in the population of entities under study. 

Statisticians and programmers have programmed the pa-
rameter-estimation methods into easy-to-use software—gen-
erally the same software that we use to compute p-values. 
(This because behind the scenes the software uses the esti-
mated values of the parameters to assist with the computation 
of the p-values, as we shall see.) Thus we can (if we follow 
the relevant rules) easily correctly perform these methods by 

supplying the data table and a few simple instructions to the 
software and then running the software. The software ana-
lyzes the data and provides “best” estimates of the numeric 
values of the parameters of the model equation of interest in 
easy-to-understand computer output.  

The fact that the obtained parameter estimates are only es-
timates of the true values implies that if we perform the same 
research project to estimate the same parameter values two or 
more times, each time collecting fresh data, then the obtained 
numeric values of the estimate for a given parameter will vary 
(by “small” amounts) from one instance of the research pro-
ject to the next. This variation has three sources: (a) possible 
variation in relevant unmeasured variables that vary from one 
instance of the research project to the next due to possible mi-
nor differences in the research conditions, (b) random meas-
urement error in the measurement of the values of the re-
sponse and predictor variables in the entities in each instance 
of the research project, and (c) possibly a true random com-
ponent of the variation [although it is difficult, perhaps im-
possible, to separate this component from the variation due to 
(a) and (b)]. 

Since we have been discussing the “true” values of param-
eters, it is also useful to consider the “true” model equation 
for a relationship between variables. Here is a sensible empir-
ical definition based on the principle of parsimony:  

Definition: The true model equation with the true 
values of the parameters of a relationship between var-
iables is the simplest equation and parameter values 
that makes the very best predictions of the values of 
the response variable from the values of the available 
predictor variables for new entities from the popula-
tion.  
This definition doesn’t enable us to directly identify the 

true equation for a given relationship between variables. But 
the definition tells us how to zero in on the true equation 
(through trying different forms of the equation with relevant 
data and selecting the simplest form that reliably works best). 

Appendix H discusses two instances when the true values 
of the parameters of a model equation aren’t viewed as fixed 
values, but are viewed as varying. As noted, we usually view 
the values of parameters that we work with in scientific re-
search as estimated values. Appendix I discusses an instruc-
tive exception in the physical sciences in which we know the 
exact true values of certain parameters of model equations. 

B.5. Detecting Relationships Between Variables by 
Examining Estimated Parameters 

As noted in the body, we determine whether a relationship 
exists between variables by determining whether the research 
data imply that the estimated value of a relevant parameter of 
the relevant model equation is inconsistent with the null hy-
pothesis. If we can demonstrate that the estimated value of a 
parameter is inconsistent with the null hypothesis, then this 
implies that it is unlikely that the null hypothesis is true in the 
population (Cox, 2006, pp. 42, 197-198). This, in turn, im-
plies that it is likely that a relationship exists between (a) the 
predictor variable(s) that is (are) associated with the parame-
ter and (b) the response variable. 
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In determining whether a relationship exists between var-
iables, the relevant parameter is often a multiplicative param-
eter (typically a regression coefficient) of a term in the model 
equation. If the relevant null hypothesis is or were true in the 
population, then the value of this parameter will be a particu-
lar “null” value. In the case of a multiplicative parameter of a 
term in a model equation, the null value of the parameter is 
usually the value zero. 

It is easy to see that if the correct value of a multiplicative 
parameter of a term in a model equation is or were zero, then 
if this value is used in the equation, it causes the associated 
term in the equation to vanish. For example, if the correct 
value of 𝑏2 in equation (2) in appendix B.3 is zero, then if this 
value is used in the equation, it causes the 𝑏2𝑥2 term to vanish 
from the equation. In contrast, if the correct value of a multi-
plicative parameter is or were noticeably different from zero, 
then this implies that the term (or perhaps a similar term) be-
longs in the equation. 

Furthermore, in a large but sensible conceptual leap, if the 
correct value of a multiplicative parameter of a term in a 
model equation is noticeably different from zero, then this is 
good evidence (in the absence of a reasonable alternative ex-
planation) that a relationship exists in the population between 
(a) the predictor variable(s) associated with the term and (b) 
the response variable. That is, if the correct value of a multi-
plicative parameter is noticeably different from zero, then this 
is good evidence that the associated research hypothesis is 
true, and the associated null hypothesis is false. 

For example, suppose we wish to use equation (2) to study 
a particular relationship between variables. And suppose we 
collect some relevant data for the variables in the equation 
from a representative sample of entities from the population. 
And suppose we analyze the data to estimate the values of the 
parameters, and we discover that the estimated value of 𝑏2 in 
the equation is substantially different from zero. Then this 
suggests (in the absence of a reasonable alternative explana-
tion) that the 𝑏2𝑥2 term (or a similar term) belongs in the 
equation, which suggests that there is a relationship between 
the predictor variable 𝑥2 and the response variable 𝑦. Thus we 
can (in theory) determine whether we have good evidence that 
a relationship exists between variables by checking whether 
the correctly estimated value of the relevant multiplicative pa-
rameter of the relevant term in the relevant model equation is 
different from zero. 

More generally, we can determine whether we have good 
evidence that a relationship exists between variables by 
checking whether an appropriate test statistic (which may or 
may not be a parameter of a model equation) is significantly 
different from the relevant null value. For example, in exper-
imental research (as opposed to observational research) re-
searchers often use a procedure called “analysis of variance” 
to study the relationships between the predictor variables and 
the response variable. In analysis of variance we can check 
whether we have good evidence of a relationship between one 
or more predictor variables and the response variable by 
checking whether the relevant “F-statistic” is significantly 
different from its null value. The null value for the F-statistic 
is roughly 1.0. 

B.6. How to Determine Whether a Relationship Ex-
ists Between Variables 

Appendix B.4 names three sensible general methods that 
we can use to estimate the values of parameters of a model 
equation from scientific research data. And appendix B.5 im-
plies that we can (in theory) determine if there is a relationship 
between two variables by determining whether the relevant 
parameter for the relevant term in the model equation of the 
relationship is different from the null value. Therefore, in the-
ory, we can determine whether there is a relationship between 
two variables by collecting appropriate data (i.e., by collect-
ing values of the two variables from members of a representa-
tive sample of entities from the population). Then we can use 
one or more of the parameter-estimation methods to estimate 
(from the data) the value of the relevant parameter of the ap-
propriate term in an appropriate model equation for the rela-
tionship between the two variables. (We can choose an “ap-
propriate” model equation through careful examination of 
scatterplots or other graphs of the data.) Then we can check 
whether the estimated value of the parameter is different from 
the null value. If we find that the estimated value is different 
from the null value, this suggests that we can reject the null 
hypothesis and conclude that a relationship exists between the 
two variables. 

However, although the preceding ideas are theoretically 
correct, there is a further complication: If we estimate the 
value of a parameter of a model equation from appropriate 
scientific research data, then (as discussed in the preceding 
subsection) the estimated value will vary from one research 
project to the next. This implies that the estimated value of a 
parameter will virtually never be exactly equal to the null 
value, even when there is no relationship whatever between 
the variables in the population. This phenomenon occurs even 
in realistic artificial data in which (by construction) there is 
absolutely no relationship between the variables. The phe-
nomenon is due to inescapable random noise in data. 

Therefore, if we wish to determine whether a relationship 
exists between certain variables, we can’t simply check 
whether the estimated value of the relevant parameter of a rel-
evant model equation is different from the null value (because 
the estimated value will almost always be different from the 
null value). Instead, we must check whether the estimated 
value is significantly different from the null value—far 
enough away from the null value to be well above the noise. 

Statisticians have invented p-values to help us to deter-
mine whether the estimated value of a relevant parameter of a 
relevant model equation of a relationship between variables is 
significantly different from the null value. The p-values ena-
ble us to “test” whether we have good evidence that a rela-
tionship exists between the studied variables in the entities in 
the studied population. The following subsections expand the 
discussion of the p-value that is given in the body of this pa-
per.  
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B.7. The p-Value 

As noted in section 3 in the body, the p-value is a popular 
measure of the weight of evidence that the value of a param-
eter in a model equation is different from the relevant null 
value. If the p-value implies that we have good evidence that 
the parameter is different from the null value, then (in the ab-
sence of a reasonable alternative explanation) this is good ev-
idence that a relationship exists between the predictor varia-
ble(s) associated with parameter and the response variable in 
the entities in the population.  

Let us revisit the standard definition of the p-value that is 
given in the body:  

Definition: The p-value for the estimated value of a 
parameter of a model equation (or the p-value for the 
value of a relevant test statistic) is the fraction of the 
time (i.e., the probability) that the value, as estimated 
from the research data, will be as discrepant or more 
discrepant from the relevant null value as it is with the 
present data if the following three conditions are or 
were all satisfied:  
• the associated null hypothesis is or were true in the 

population, and 
• we were to perform the research project over and 

over, each time using a fresh random sample of en-
tities from the population of interest, and 

• certain often-satisfied technical assumptions that 
are required to correctly compute the p-value are or 
were properly satisfied. 

It is important to observe that the p-value is a probability 
of the relevant event occurring if the null hypothesis is or were 
true. This initially may seem odd because we are highly inter-
ested in proving that the null hypothesis is false. So why are 
we computing probabilities pertaining to the undesirable case 
when the null hypothesis is true? The answer is that this ap-
proach is (arguably) logically the most sensible approach, 
even though it is roundabout. The approach is “most sensible” 
because many researchers agree that nobody has proposed a 
better approach, although various approaches have been pro-
posed, as discussed in appendix F.  

Consider the logic of the p-value. The definition implies 
that the lower the p-value, the less likely it is that a parameter 
estimate as far from the null value (or farther) as was obtained 
would be obtained if the null hypothesis is or were true in the 
population. Therefore (in another sensible conceptual leap), 
the lower the p-value, the more evidence we have that the 
value of the associated parameter is different from the null 
value in the population. 

Thus in the case of a multiplicative parameter for a term 
in a model equation, the lower the p-value for the parameter 
(and assuming there is no reasonable alternative explanation 
for the low p-value), the more evidence we have that the as-
sociated term (or a similar term) belongs in the equation. That 
is, the lower the p-value, the more evidence we have that a 
relationship exists in the population between the predictor 
variable(s) associated with the term and the response variable. 

Statistics textbooks explain methods to correctly compute 
p-values (from an appropriate data table) as evidence of the 
existence of an effect (usually an effect that is a relationships 

between variables). The various methods enable researchers 
to study the many different types of relationships that can ex-
ist. The textbooks also explain the underlying technical as-
sumptions for each method. (The assumptions pertain to how 
the entities must be sampled from the population and pertain 
to the presumed distribution of the values of the error term in 
the model equation.) 

As noted in the body, we can use statistical software to 
automatically compute p-values. This means that we don’t 
need to understand the mathematical details of the methods 
and we need only understand the underlying assumptions. 
Many different software packages can compute the same p-
values. It is reassuring that if the various mainstream pack-
ages all perform a well-established hypothesis test with the 
same data, then they all report exactly the same p-value. They 
also all agree exactly about the parameter estimates and about 
the value for each of the other well-established statistics per-
taining to the analysis. 

[The conclusions of the preceding paragraph are excepting 
rare software bugs and are excepting very small differences 
introduced by numeric rounding, which arise due to (a) math-
ematically identical but numerically different algorithms used 
in different statistical software packages, and (b) slight differ-
ences in number representation in different computer hard-
ware. These rounding differences typically only occur in the 
one, two, or three least-significant digits in typical 15-deci-
mal-digit computations, and thus the differences are virtually 
always ignorable.] 

In some unusual cases no appropriate software is available 
to compute correct p-values for the parameters of a studied 
model equation of a studied relationship between variables. 
However, in these cases, it is generally easy for a statistician 
to write a simple custom program to compute appropriate p-
values through randomization tests or through a Monte Carlo 
simulation of the research situation under study. 

A thoughtful reader sensibly might ask why we don’t 
compute the probability that a parameter will have the exact 
value that it has. The answer is that the probability that a pa-
rameter has a particular exact value in a continuous possible 
range of values can be shown to be always zero. Therefore, 
we can only compute the probability that the parameter esti-
mate lies in some range of values. We could compute the 
probability that the parameter lies in a small range around its 
estimated value, but then we must specify the width of the 
range, which is theoretically possible, but seems arbitrary, and 
therefore the approach isn’t used. Instead, we compute the 
probability for the range of all values that are as far as or far-
ther than the parameter estimate is from the null value if the 
null hypothesis is or were true, which seems most sensible. 

Although the probability that a parameter has a particular 
value is zero, we can compute the probability density for a 
parameter at a particular value, which is it different but related 
concept (and is generally nonzero). Probability densities are 
used to assist in developing two important measures of the 
weight of evidence that an effect is real called the “likelihood 
ratio” and the “Bayes factor”, as discussed in appendix F. 
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B.8. The Critical p-Value 

As noted in the body, researchers often specify a “critical” 
p-value. This is the value that the p-value obtained in a re-
search project must be less than or equal to before we will 
conclude that we have (in the absence of a reasonable alterna-
tive explanation) reasonable evidence that the relationship be-
tween variables we are studying exists in the population—
enough evidence to allow us to reject the null hypothesis. By 
convention, researchers often use a critical p-value of 0.05 or 
0.01, although some use and recommend lower critical p-val-
ues, as discussed in appendix C. Of course, regardless of 
which critical p-value a researcher appeals to in reporting and 
interpreting his or her research, each individual reader of the 
research report is free to use their own critical p-value in in-
terpreting the research. 

As suggested in the body, if we use a lower critical p-
value, then we decrease the false-positive error rate, which is 
obviously a good thing. But, unfortunately, if we use a lower 
critical p-value, then (with other factors held constant) we in-
crease the false-negative error rate—i.e., the rate at which we 
will fail to discover evidence of an effect even though the ef-
fect is present in the population. So researchers generally pre-
fer to use high critical p-values, such as 0.05 or even 0.1, to 
avoid false-negative errors (and to reduce research costs).  

In contrast, journal editors generally specify that the main 
p-value in a paper be less than a somewhat low critical p-value 
(often 0.01 for higher-prestige journals) before a research pa-
per will be considered for publication. This requirement helps 
editors to reduce the rate of publication of false-positive errors 
in their journals. 

The lower the p-value we obtain in a data analysis below 
the critical p-value, the more evidence we have (in the ab-
sence of a reasonable alternative explanation) that the associ-
ated research hypothesis is true and therefore the associated 
null hypothesis is false. 

As noted in the body, the procedure of computing a p-
value and then determining whether it is less than or equal to 
the critical p-value is a statistical hypothesis test of the re-
search hypothesis. This is also often referred to as “statistical 
inference” because we are making inferences from the data 
about effects in the underlying population. 

B.9. Reasonable Alternative Explanations 

As noted in the body, reasonable alternative explanations 
play a key role in scientific research. And most modern sci-
entists won’t accept a conclusion suggested by a scientific re-
search result if there is a reasonable alternative explanation 
for the result. Instead, they will ask for or perform further re-
search to determine which of the possible explanations is the 
correct explanation. 

There is a wide range of possible standard types of reason-
able alternative explanations of a research finding, including 
hidden variables, confounding, data collection errors, data 
analysis errors, equipment failure, and even researcher or re-
search assistant fraud. Also, certain reasonable alternative ex-
planation are generally specific to each field of study.  

Unfortunately, there is sometimes a correct reasonable al-
ternative explanation for a research finding, but the explana-
tion is undetectable because the report of the research project 
omits the relevant information. For example, suppose that a 
researcher (in good faith) performs a research project over and 
over, each time adjusting the research conditions somewhat, 
hoping to find a set of conditions in which the effect under 
study will be observed. And suppose that behind the scenes 
the research hypothesis is false and thus the null hypothesis is 
true. If the researcher performs the research project enough 
times, then the definition of the p-value implies that some of 
the instances will obtain statistically significant results, as il-
lustrated graphically in the left-hand panel in the figure in ap-
pendix B.12.  

If in this situation the researcher reports only a single in-
stance of the research project in which a significant result was 
obtained, and doesn’t report the fact that the research project 
was performed over and over, then (if other aspects of the re-
search report are satisfactory) readers of the report will inter-
pret the positive result as good evidence that the research hy-
pothesis is true even though there is a reasonable alternative 
explanation for the result and the result is actually a false-pos-
itive error.  

Selecting and reporting positive results from a large set of 
research results without reporting the negative results is called 
“cherry picking” the results. This p-value usage error, or var-
iations of it such as “data dredging”, is sometimes committed 
by less experienced or less vigilant researchers in their (admi-
rable but poorly reasoned) efforts to obtain a positive result. 

It is important to note that it is fully permissible for a re-
searcher to perform a research project over and over, adjust-
ing the conditions each time in the hope of finding conditions 
that yield a positive result. But if the researcher finds some 
conditions that appear to yield a positive result, then he or she 
should replicate this result with these conditions one or more 
times to confirm that the positive result hasn’t occurred 
through mere chance. Some researchers don’t do that, and in-
stead publish a report of their “positive” result, to their later 
regret when their false-positive finding can’t be replicated. 

We can reduce usage errors such as cherry picking and 
data dredging in scientific research through proper training. 
The training should point out that false-positive errors aren’t 
good for a researcher’s career because they are invariably ex-
posed if a research result is important. Also, because false-
positive errors can lead to a significant waste of resources, 
they can lead to strong criticism or censure of the researcher 
by the research community.  

(Pons and Fleischmann were more or less drummed out of 
chemistry for their expensive apparent false-positive cold-fu-
sion error, as discussed by Huizenga, 1993. This error may 
have been caused partly by cherry picking and partly by meas-
urement problems.) 

As noted in the body, the relevant scientific community 
decides whether a research finding is believable through 
evolving informal consensus in the community through for-
mal and informal discussion about the finding. If nobody in 
the research community can think of a reasonable alternative 
explanation for the finding, and (as is usually required) if the 
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finding has been successfully replicated, then the community 
will, in due time, accept the finding. 

What is the relationship between the p-value and the idea 
of a reasonable alternative explanation? The p-value (and the 
various other measures of weight of evidence that an effect is 
real) is merely a sensible technique to tentatively eliminate 
chance as a reasonable alternative explanation of evidence 
that an effect observed in scientific research is real in the en-
tities in the population of entities under study. 

B.10. Positive Results and Negative Results 

As noted in the body, if we perform a proper test of a re-
search hypothesis using appropriate scientific research data, 
then there are only two possible outcomes of the test, either a 
“positive result” (when the p-value is less than or equal to the 
critical p-value) or a “negative result” (when the p-value is 
greater than the critical p-value. 

A positive result implies (in the absence of a reasonable 
alternative explanation) that we have good evidence of the ex-
istence of the effect or phenomenon we are looking for—good 
evidence that the research hypothesis is true—typically good 
evidence that the relevant relationship between variables ex-
ists in the population.  

In contrast, a negative result implies that we have no good 
evidence of the existence of the effect or phenomenon we are 
looking for. 

We can also obtain a negative research result if we initially 
obtain a positive result, but then we discover a reasonable al-
ternative explanation for the result. The reasonable alternative 
explanation turns the positive result into a negative result be-
cause the alternative explanation implies that the result is 
equivocal, and scientific research strives to be decisive. 

Negative results occur often in scientific research, but re-
ceive much less publicity than positive results. For example, 
in the 1950’s some medical practitioners strongly believed 
(based on informal clinical experience) that laetrile (derived 
from apricot pits) could cure cancer. This led to a formal ex-
periment (published in 1982) to look for evidence of a rela-
tionship between laetrile and cancer. But the experiment 
found no good evidence of a relationship between the amount 
of laetrile administered to cancer patients and the amount of 
cancer in the patients. And virtually all other careful research 
to study the effects of laetrile on cancer has obtained negative 
results. Therefore, all mainstream medical researchers now 
believe that there is no beneficial relationship between laetrile 
and cancer in cancer patients (National Cancer Institute, 
2017).  

Although negative results occur often, we don’t hear much 
about them except in a few high-profile examples (such as the 
laetrile example). This is because negative results are gener-
ally uninteresting, only telling us that the research project 
failed to find what it was looking for. Scientists and the gen-
eral public are much more interested in positive results in sci-
entific research—results in which a new effect or phenome-
non is discovered. For example, the general interest in posi-
tive results was reflected in the initial excitement about lae-
trile when positive effects of laetrile from informal clinical 

experience were reported. Positive results (when they are cor-
rect) often lead to useful applications (e.g., a cure for cancer), 
but negative results don’t. 

In view of the lack of interest in negative results, and in 
view of the many positive results that are vying for the limited 
space in scientific journals, most journals will almost never 
publish the report of a research project whose main finding is 
a negative result. This is sometimes a source of frustration for 
researchers who believe that their negative results are im-
portant. Appendix J discusses journals and registries that do 
provide information about negative results. Appendix K dis-
cusses some instructive exceptions to the general rule that 
negative results won’t be accepted for publication in a main-
stream scientific journal. 

B.11. False-Positive and False-Negative Errors 

Regardless of which approach we use to decide whether a 
relationship exists between variables, we must take account 
of the possibility of two types of errors—false-positive errors 
and false-negative errors. As noted in the body of this paper, 
a false-positive error occurs if (through chance or through 
some other reason) we obtain a positive result and therefore 
conclude that a particular relationship exists between varia-
bles, but actually behind the scenes no detectable relationship 
exists between the variables in the population. Using the ter-
minology of signal detection theory, a false-positive error is 
sometimes called a “false alarm”. 

If a research project makes a false-positive error, then the 
researcher usually doesn’t recognize this at the time. Instead, 
the researcher generally believes that the positive result im-
plies that the research hypothesis is true. The researcher be-
lieves this because that is what he or she is trying to prove, so 
they have an understandable and inescapable bias toward the 
research hypothesis. 

False-positive errors are costly in the sense that if they oc-
cur (and if the result is important), then they lead other re-
searchers to try to replicate the research finding in order to 
confirm and extend our knowledge about the relationship be-
tween the variables. But if a false-positive error has occurred 
and therefore the null hypothesis is (actually or in effect) true 
then, unfortunately, this replication research merely amounts 
to a wild-goose chase that necessarily must fail—an undesir-
able (but unfortunately unavoidable) waste of resources. 

It is noteworthy that if a false-positive error occurs, but 
the result is unimportant, then nobody may try to replicate the 
result and therefore the false finding will remain uncorrected 
in the research literature. This is undesirable, but doesn’t do 
much harm (because the result is unimportant). And if an un-
corrected false-positive result someday becomes important, 
then other researchers will try to replicate it, and will fail, and 
the result will therefore be discredited. 

It is (at least in theory) possible to compute the rate of oc-
currence of false-positive errors in a scientific discipline. This 
rate depends on (a) the rate of study of true research hypoth-
eses in the discipline, (b) the average critical p-value used in 
the discipline, and (c) the average power of the statistical tests 
used in the discipline (Jager and Leek 2014, fig. 1). This de-
pendence is illustrated in figure B.1 
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Figure B.1. A graph showing the percentage of statis-
tically significant results that reflect false-positive er-
rors in research projects in a discipline (e.g., in medi-
cal research) as a function of the percentage of tested 
research hypotheses that are actually true in the disci-
pline. The computer code to generate this graph (with 
an explanation of the logic) is available in the supple-
mentary material of this paper. 

The three curving lines on the graph show the percentage 
of false-positive errors that will occur in a scientific discipline 
as a function of the percentage of tested research hypotheses 
that are actually true across the discipline. The lines show this 
function for three different hypothetical averaged statistical 
powers of the statistical tests performed in the discipline. For 
example, if the average power of statistical tests in a discipline 
is 0.7, then the dashed red line shows the relationship between 
the variables.  

For simplicity, the graph in figure B.1 is based on the as-
sumption that the “average” critical p-value used in all re-
search in the discipline is 0.05. However, the graph can be 
readily redrawn for other assumed average critical p-values, 
and will be similar. (The lower the average critical p-value 
used in a discipline, the closer the three lines move to the 
lower left corner of the graph.) 

The graph is based on the assumption that we know the 
average power of statistical tests that are used in a given dis-
cipline. However, in actual scientific research in a given dis-
cipline we never know the average power of statistical tests in 
the discipline. Similarly, we don’t know the percentage of 
tested research hypotheses that are actually true in a given dis-
cipline. However, it seems likely that in any given research 
discipline the percentage of tested research hypotheses that 
are actually true lies somewhere between 1% and 60%, and it 
seems likely that the average power of statistical tests in the 
discipline lies somewhere between 0.4 and 0.9, which are the 
regions covered by the graph. 

The graph is also based on the assumption that research is 
done without other types of error beyond false-positive and 
false-negative errors due to chance. But various other errors 
(e.g., cherry picking, carelessness, fraud) can occur in scien-
tific research, which have a net effect of causing the lines to 
be somewhat different in reality from the lines on the graph. 
But the lines on the graph resemble reality, even if they don’t 

reflect it perfectly, and thus the graph helps us to understand 
false-positive errors. 

The graph implies that if 25% of the research hypotheses 
that are studied in a research discipline are actually true, and 
if the average power of research projects in the discipline is 
0.7, and if we use a critical p-value of 0.05 in the research 
projects in the discipline, and if there are no extenuating fac-
tors, then roughly 18% of the positive research results in the 
discipline will reflect false-positive errors. 

Ioannidis (2005) suggested that more than half of the re-
search findings published in medical research articles reflect 
false-positive errors. The graph shows that this will be the 
case if all positive results are published and if the percentage 
of tested research hypotheses in medical research that are ac-
tually true is less than around 6.8% and if the average power 
of medical research projects is around 0.7, and if medical re-
search projects use a critical p-value of 0.05. (Medical re-
search projects generally use a lower critical p-value, typi-
cally 0.01, or even 0.001. Usage errors also cause some false-
positive errors in medical research. Thus the percentage of re-
search hypotheses that are actually true in medical research 
could be greater than 6.8%, but still yield a 50 percent false-
positive error rate.) 

As suggested in the body of this paper, the existence of 
false-positive errors in the research literature isn’t a serious 
problem if we keep the possibility of these errors in mind. This 
is because if a positive scientific research result is potentially 
important, then we can easily eliminate (well, almost elimi-
nate) the possibility that this result is a false-positive error 
through a successful carefully performed independent repli-
cation of the result. Most important scientific research results 
must be replicated before experienced researchers will believe 
them (because experienced researchers are highly aware of 
the possibility of false-positive errors). Thus replication is an 
important part of the efficient operation of the scientific 
method. 

The preceding paragraphs discuss the idea of a false-pos-
itive error in a scientific research project. In a similar serious 
problem, p-values sometimes lead us to make false-negative 
errors in research projects. As noted in the body, a false-neg-
ative error occurs if we obtain a negative result and therefore 
conclude that we have no evidence of the existence of a rela-
tionship between a particular pair (or larger set) of variables 
when, in fact, a relationship of the hypothesized form actually 
does exist in the population. A false-negative error is some-
times called a “failed alarm”. 

False-negative errors are costly in the sense that if a false-
negative error occurs (and if the result is important), then we 
lose the benefits that we would have obtained if we had dis-
covered the relationship between the variables. In particular, 
society loses the social or commercial benefits that would 
have arisen through discovery of the relationship. And the re-
searcher loses the benefits of emotional gratification, honor, 
and financial reward for discovering a useful new relationship 
between variables. 

Thus both false-positive and false-negative errors are 
clearly undesirable in scientific research. Unfortunately, both 
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types of error are always possible in a scientific research pro-
ject. We deal with the possibility of these errors by using var-
ious sensible methods to minimize their occurrence. 

In particular, if we use the p-value to detect relationships 
between variables, then we can reduce the rate of occurrence 
of false-positive errors by using a lower critical p-value. That 
is, the lower we set the critical p-value, the lower the rate 
(across multiple research projects) of occurrence of false-pos-
itive errors in the research (but the higher the rate of false-
negative errors). 

Similarly, for a given critical p-value, we can control the 
rate of false-negative errors by controlling the “power” of the 
hypothesis tests—the higher we set the power of the tests, the 
lower the rate of false-negative errors. We can increase the 
power of hypothesis tests by (a) increasing the sample size, 
(b) using more precise measurement methods, (c) studying 
more relevant predictor variables, and (d) using more efficient 
research designs, as discussed in statistics textbooks about re-
search design. 

If we perform a large number of hypothesis tests in a re-
search project, as often occurs in modern data analysis with 
“big data”, then false-positive errors become more likely, 
merely because we are performing so many hypothesis tests. 
For example, if we use the standard approach with a critical 
p-value of 0.05, then this implies that (even if we do every-
thing properly) a false-positive error will occur roughly 5% of 
the time when there is (at least in effect) no relationship be-
tween the relevant variables. Therefore, experienced re-
searchers who perform a large number of hypothesis tests in 
a research project use special procedures to control the rate of 
false-positive errors, as discussed by Benjamini and 
Hochberg (1995) and Efron and Hastie (2016). 

Of course, if we wish to perform scientific research using 
a low critical p-value and if we wish to use hypothesis tests 
with high power, then this increases the research cost, so we 
must strike a reasonable compromise. Experienced research-
ers use statistical principles to design their research to sensi-
bly control the rate of false-positive errors, while maximizing 
the power of the statistical tests to detect the sought-after re-
lationships (i.e., minimizing false-negative errors), while 
minimizing the cost. 

B.12. The Distribution of the p-Value Under the Null 
and Research Hypotheses 

The logic behind the p-value implies that if we were to 
perform the same research project over and over, each time 
using a fresh sample of entities from the population, and if we 
were to compute the p-value for the same hypothesis test each 
time, then the value of the p-value would generally be differ-
ent each time. It is instructive to study the distribution of the 
p-values that (under standard conditions) we will get if we re-
peat the same research project over and over. In other words, 
we study the relative frequency with which different p-values 
will occur. Of course, the distribution of p-values we get will 
depend on whether the research hypothesis or the null hypoth-
esis is true. 

It is easy to show that if we repeat a research project over 
and over, and if the null hypothesis is true (i.e., the relevant 

“effect size” is zero in the population), and if the assumptions 
underlying the p-value are satisfied, then the p-values will oc-
cur in a “uniform” distribution. This uniform distribution is 
illustrated in the left-hand histogram in figure B.2. 

 
Figure B.2. Two histograms, each showing the distri-
bution of the p-values if we repeat a particular research 
project over and over, each time collecting fresh data. 
These histograms were computed through a computer 
simulation. The computer code to generate the histo-
grams (with an explanation of the logic) is in this pa-
per’s supplementary material. 

The scale of the horizontal axis of each histogram in the 
figure ranges between 0.0 and 1.0 because that is the possible 
range of values of a p-value. The scale on the vertical axis of 
each histogram is a scale of percentages ranging between zero 
and 50 percent. If you add together the heights of the 20 bars 
on each histogram, the sum of the heights of the bars on each 
histogram is exactly 100 percent.  

The histogram on the left summarizes the p-values in a 
data table that was generated to contain roughly 2.5 million 
simulated p-values under the assumption that the null hypoth-
esis is true (i.e., the effect size is 0.0). Similarly, the histogram 
on the right summarizes the p-values in a data table that was 
generated to contain roughly 2.6 million simulated p-values 
under the assumption that the research hypothesis is true and 
the “effect size” is 2.0. 

(Technically, the effect size in this example is the value of 
the non-centrality parameter of the noncentral t-distribution 
that was used to generate the data behind each histogram. The 
two histograms in the figure are based on a statistical test of a 
coefficient in a standard linear regression analysis [assuming 
the t-statistic for the coefficient has 30 degrees of freedom]. 
However, similar histograms can be generated through a com-
puter simulation for the p-values for any mathematically de-
scribable statistical hypothesis test.) 

The histogram on the left shows that if the null hypothesis 
is true in the underlying population (and if the underlying as-
sumptions of the computation of the p-value are adequately 
satisfied), then we can expect that the p-values we obtain if 
we repeat the research project over and over will be spread 
perfectly evenly between 0.0 and 1.0. (The almost impercep-
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tible deviations from perfect uniformity in the left-hand his-
togram are artifacts of the necessarily discrete computer pro-
cedure that was used to generate it.) 

The height of each bar on the left-hand histogram is theo-
retically exactly 5%. Thus this histogram tells us that in re-
search projects in which the null hypothesis is true, if we di-
vide the p-value range into 20 adjacent segments of equal 
width, then it will be equally likely for these research projects 
that the p-value will lie in any one of the segments—the p-
value will lie in each segment 5 percent of the time. This im-
plies that if the null hypothesis is true, and if the underlying 
assumptions are satisfied, we will obtain p-values that are less 
than 0.05 exactly 5 percent of the time. That is, if we do eve-
rything properly, in research projects in which the null hy-
pothesis is (unfortunately) true (or in effect true), our statisti-
cal test will (at random) make a false-positive error roughly 5 
percent of the times that we perform the test. 

The histogram on the right is computed under the assump-
tion that the population effect size is 2.0, which implies that 
the null hypothesis is false, and thus the research hypothesis 
is true. We see that in this case if we repeat the research pro-
ject over and over (and if the underlying assumptions of the 
computation of the p-value are adequately satisfied), then the 
p-values tend to fall closer to the lower end of the range—i.e., 
closer to 0.0 than to 1.0. Clearly, this is exactly what we want 
because if the null hypothesis is false, then we want the p-
value to be low because this tells us that the null hypothesis is 
false. 

Consider the height of the leftmost bar on the right-hand 
histogram, which is the bar for the case when the p-value is 
less than 0.05. We see that the bar contains roughly 49% of 
all of the 2.6 million p-values behind the histogram. This bar 
tells us that, under the assumed conditions, we can expect the 
p-value to be less than 0.05 roughly 49 percent of the time if 
we repeat the research project over and over. 

The histogram on the right implies that in the research pro-
ject under discussion the p-value will be greater than 0.05 in 
roughly 100 − 49 = 51% of the time. The p-value will be 
greater than zero point and 05 even though the fact that the 
effect size is 2.0 implies that (behind the scenes) the null hy-
pothesis is false. Thus in this research project we would make 
a false-negative error roughly 51% of the time if we were to 
perform the research project and over and over, each time (un-
fortunately) obtaining a p-value in the range between 0.05 and 
1.00, telling us that we don’t have enough evidence to reject 
the null hypothesis. 

So, in the long run, in the situation illustrated in the histo-
gram on the right, the p-value makes a false-negative error 
slightly more than half of the time. Thus a thoughtful reader 
might reasonably wonder if there might be a better way to de-
tect a relationship between the variables that would (without 
detriment) lead to the correct positive result more often. Un-
fortunately, nobody has found a better way, and apparently 
there is no better way. That is, there is no obvious way (for a 
given effect size and in a given research design) to decrease 
the false-negative error rate without also unacceptably in-
creasing the false-positive error rate. This is because the two 
rates are tightly bound together, both being a function of (a) 
the design of the research project under consideration, (b) the 

effect size, (c) the statistical procedure (e.g., the p-value) we 
have chosen to use to decide if we have sufficient evidence to 
(tentatively) reject the null hypothesis, and (d) the particular 
critical value that we have chosen to use with the procedure 
(e.g., 0.05 for the p-value). 

Of course, the research design is the key here. And in the 
research behind the right-hand histogram in the figure we 
could redesign the research project so that it has a more pow-
erful statistical test, and then we would be more likely to find 
good evidence of the relationship—we would make false-neg-
ative errors less than 51 percent of the time. 

Designing research projects to decrease false-negative er-
rors is conceptually easy. That is, assuming that the effect un-
der study is actually real in the population, we can reduce the 
false-negative error rate in scientific research by (a) using 
more precise measuring instruments to measure the response 
and predictor variables, (b) using more relevant predictor var-
iables, and (c) using a more efficient research design (as dis-
cussed in statistics textbooks). Of course, generally these ap-
proaches increase research costs, so we must compromise to 
contain costs. In view of these points, diligent researchers 
spend substantial time designing their research projects to 
maximize the chance of non-equivocal positive results before 
they begin any operational work. 

B.13. Do p-Values Make Publication Decisions? 

Demidenko (2016, sec. 2) suggests that an article report-
ing a scientific research result will be accepted for publication 
in a scientific journal merely if the article has a low-enough 
p-value for its main result. This suggestion is based on a mis-
understanding. 

Recall that mainstream scientific journals almost always 
only publish articles that report positive results—they almost 
never publish articles that report negative results (because 
negative results are generally uninteresting). Many journals 
that report scientific research results include regular discus-
sions of analyses of research data. Given that journals gener-
ally only publish positive results, an editor may sensibly use 
a critical p-value as a screening rule to determine whether a 
result is sufficiently “positive” to be considered for publica-
tion in their journal (Estes 1997, Cox, 2014, Jager and Leek, 
2014). That is, as suggested in appendix B.8, a paper won’t 
be considered for publication unless the p-value for the main 
research finding in the paper is less than or equal to the jour-
nal’s critical p-value (often 0.01 for higher-prestige journals). 
Journal editors use a critical p-value as a screening rule be-
cause this helps them to control the rate of publication of 
false-positive errors in their journals. 

Thus, a low p-value in a hypothesis test for the main re-
search finding of a research project is a necessary condition 
that must be satisfied before many journals will consider a pa-
per reporting research results for publication. As illustrated by 
Demidenko, this leads some people to confuse things and to 
think that a low p-value is a sufficient condition for publica-
tion. However, a low p-value in a hypothesis test is never a 
sufficient condition for publication of a paper in a reputable 
journal. And although p-values may participate in publication 
decisions, they don’t make publication decisions. Instead, the 
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editor of a journal will decide to accept a paper for publication 
only if (with rare exceptions) it has a sufficiently low p-value 
for its main finding and if the paper satisfies the journal’s 
many other mandatory criteria for acceptance. These include 
the criterion that the main research finding must be “interest-
ing” and the criterion that (except in unusual circumstances) 
there must be no reasonable alternative explanation for the 
low p-value for the main research finding. 

B.14. The Publication of False-Positive Errors 

It is an unfortunate fact that (regardless of which method 
we use to detect relationships between variables) some false-
positive errors do slip through a journal’s screening process 
and are published, unrecognized as false-positive errors by 
both the researcher and by the journal’s editors and reviewers. 
Currently, there is substantial scientific interest in the problem 
of the publication of false-positive errors in scientific re-
search, with some authors viewing the publication of these er-
rors as a “replication crisis”, a scandal, as discussed by Ioan-
nidis (2005). 

There are two main causes of the publication of false-pos-
itive errors. First, some false-positive errors occur due to ran-
dom noise in the data that has (by chance) led to a statistically 
significant result. Not much can be done about these false-
positive errors because chance is uncontrollable. Second, 
some false-positive errors are obtained due to researchers’ 
negligence, such as through cherry picking. We can reduce 
these false-positive errors through proper training.  

False-positive errors are less frequent in the physical sci-
ences than in the biological and social sciences. This may be 
because there is often a higher signal-to-noise ratio in the data 
in the physical sciences. That is, real effects observed in data 
in the physical sciences tend to be far above the noise, and 
thus are usually clearly real effects. 

Appendix B.11 discusses the rate of occurrence of false-
positive errors in scientific research. The rate of publication 
of false-positive errors in a given field depends on the rate of 
occurrence of the errors in the field and depends on the critical 
p-value used by journal editors in the field (or depends on 
some other sensible criterion of the weight of evidence re-
quired for consideration for publication, as discussed in sec-
tion 7 and appendix F). That is, the lower the critical p-value 
used by an editor, the lower the rate of publication of false-
positive errors published in the journal. 

Unfortunately, it is difficult (arguably impossible) to di-
rectly determine the rate of occurrence of false-positive errors 
in a given field. Therefore, the rate of publication of false-
positive errors in a field can (apparently) only be determined 
(to a limited extent and in hindsight) by the study of failures 
to replicate published positive results in the field. 

As noted in section 3.6 in the body, we identify false-pos-
itive errors by trying to replicate the associated result, but fail-
ing. A single failure to replicate a positive result generally 
isn’t definitive in determining that the associated research hy-
pothesis is false because there are usually several possible rea-
sons why a replication attempt failed. For example, certain 
types of carelessness in research make it likely that a research 
project will obtain a negative result. Also, slightly different 

research conditions between the original research and the rep-
licating research may lead to a negative result. Also, a failure 
to replicate a positive result amounts to a negative result and, 
as noted in appendix B.10, journals generally don’t publish 
negative results because they are less interesting. This ex-
plains why journals are generally unwilling to publish a report 
of a single failure to replicate a research finding.  

Of course, most journals will publish a report summariz-
ing multiple independent failures of careful research to repli-
cate a particular phenomenon. Then the weight of opinion in 
the field about the phenomenon will swing back toward the 
null hypothesis. 

The inevitability of false-positive errors in some published 
research results leads experienced researchers to consider new 
positive research results with healthy skepticism until the re-
sults are properly confirmed (replicated) in independent re-
search. Of course, important relationships between variables 
are always quickly confirmed (or disconfirmed) by other re-
searchers as they try to enhance knowledge about the phe-
nomenon. 

B.15. Comparing Hypothesis Testing with Karl Pop-
per’s Idea of Falsification 

Let us compare hypothesis testing with Karl Popper’s 
ideas about falsification in scientific research (1980, 1989, 
1992). Popper suggested that a theory isn’t a valid scientific 
theory unless it can be falsified. He used this sensible princi-
ple to support the ideas that Freudian theory, Marxist theory, 
and astrology aren’t scientific theories. That is, none of the 
three theories can be readily falsified. That is, careful thinkers 
have been unable to find aspects of these theories that can be 
readily tested with some form of objective test, with the pos-
sibility of falsification of the theory through the test. In con-
trast, any accepted scientific theory (e.g., the theory of rela-
tivity) can in theory easily be empirically falsified if certain 
research findings (pertaining to relationships between varia-
bles) are or were obtained. 

The ideas about relationships between variables discussed 
in the present paper are consistent with Popper’s falsification 
approach. That is, all theories (research hypotheses) about re-
lationships between variables could in theory be falsified by 
showing that the relationship of interest doesn’t exist or by 
showing that the relationship exists, but goes in the opposite 
direction to what the theory predicts. 

However, the forms of falsification discussed in the pre-
ceding paragraph occur only rarely in the study of relation-
ships between variables. This is because (a) it is generally 
agreed that it is impossible to prove that a relationship be-
tween variables doesn’t exist, and (b) although effects that are 
opposite to what we expect occur occasionally, they are rare. 
And if we fail to find evidence that a research hypothesis is 
supported, then we almost always find that there is no good 
evidence of a relationship between the variables under study 
(as opposed to finding good evidence of the opposite relation-
ship—e.g., a decreasing relationship instead of an increasing 
relationship). (The rareness of discovery of opposite relation-
ships may occur because researchers generally think carefully 
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about the relationships they study, which makes it less likely 
that they will find the opposite.) 

Thus in actual scientific research we rarely appeal to the 
idea of falsifying a research hypothesis. In contrast, we regu-
larly appeal to the idea of falsifying the null hypothesis. That 
is, in scientific research we provide support for a theory by 
obtaining good evidence that the relevant null hypothesis is 
false. If (and, arguably, only if) we can convincingly falsify 
or reject the null hypothesis, then we can accept that a rela-
tionship between variables exists in the population and that 
therefore the theory associated with the research hypothesis is 
supported. 

Thus Popper’s theory of falsification and the notion of sta-
tistical hypothesis testing discussed in this paper are con-
sistent if we assume that the falsification is performed of the 
null hypothesis, as opposed to falsification of the research hy-
pothesis. Actually though, Popper’s theory doesn’t appear to 
recognize the null hypothesis, although the concept is easily 
added to the theory. 

B.16. Can We Make Any p-Value Arbitrarily Low? 

Demidenko (2016) correctly notes that we can (at least in 
theory) make any p-value in scientific research arbitrarily low 
by merely increasing the sample size. (This conclusion is 
based on the widely believed but unprovable premise that the 
null hypothesis is never exactly true in scientific research, as 
discussed in section 3.7 of the body of this paper.) This point 
leads Demidenko to suggest that p-values aren’t useful. 

However, Demidenko’s point, although possibly theoreti-
cally correct, doesn’t reflect a practical problem. This is be-
cause researchers generally can’t afford the enormous sample 
sizes that would be required in some cases to obtain arbitrarily 
low p-values. So, disappointingly, in real scientific research 
we often obtain high p-values—p-values that are greater than 
0.05. 

If a properly computed p-value is less than the critical p-
value, and in the absence of a reasonable alternative explana-
tion, this enables us to tentatively conclude that data based on 
an affordable sample provide enough evidence that an ob-
served effect is real in the underlying population. Without that 
(or without an equivalent procedure), in some cases we may 
deceive ourselves. Thus, contrary to Demidenko’s point, p-
values are useful because they help us to reliably determine 
(in the absence of a reasonable alternative explanation) if we 
have enough evidence that an effect is real. 

Appendix C: Is There an Optimal Critical Value for 
a Test Statistic? 

Suppose that we have performed a scientific research pro-
ject, and suppose that we have found some evidence that the 
sought-after effect is present in the population. And suppose 
we have been unable to find a reasonable alternative explana-
tion for this evidence. How can we decide whether the evi-
dence of the effect is convincing enough for us to reject the 
null hypothesis? Or, in more practical terms, how can we 
choose the best critical values for a given test statistic? For 
example, how can we choose the best critical value for the p-

value, for the Bayes factor, or for the posterior probability that 
the null hypothesis is true? 

In theory, there is an optimal critical value for a given test 
statistic (e.g., an optimal critical value for the p-value) used 
in any field of science. This is the critical value that, if used 
consistently, maximizes the total benefit-cost ratio of all sci-
entific research performed in the field.  

The optimal critical value for a test statistic will be differ-
ent in different fields of science because different fields have 
differing values of the relevant attributes that determine the 
optimal value. These attributes include (a) the rate of study (in 
good but incorrect faith) of false research hypotheses in the 
field, (b) the payoff of positive results in the field when such 
results are obtained, and (c) various other attributes, such as 
research costs in the field. 

Unfortunately, it appears that we can’t reasonably meas-
ure the attributes (a), (b), and (c) in any field of science in a 
practical sense. Therefore, it is apparently impossible to know 
the optimal critical value for a test statistic in a field of science 
according to the preceding ideas. However, it is sensible to be 
aware of these ideas because arguably they represent the 
ideal. 

The fact that we can’t know the optimal critical value for 
a test statistic in a field of science has led to the choice of 
general critical values on the basis of consensus among expe-
rienced researchers. These general critical values seem rea-
sonable in the sense that they give us a reasonable balance of 
(a) positive results, (b) false-positive errors, (c) negative re-
sults, (d) false-negative errors, and (e) research costs. And 
these critical values give researchers a level playing field—a 
consistent criterion that we can use in all “standard” scientific 
research to determine whether research results are (in the ab-
sence of a reasonable alternative explanation) believable.  

Also, by giving us a scale, the critical-value approach en-
ables researchers who think that the conventional critical 
value is unreasonable to choose their own critical value. For 
example, a researcher who thinks that the critical p-value of 
0.01 is too high can opt to use a critical p-value value of, say, 
0.005 in his or her research or in his or her interpretation of 
other researchers’ research. 

As noted in the body of this paper, in the case of the p-
value, in standard situations many researchers agree that it is 
sensible to use a critical p-value of 0.05 or 0.01. Similar con-
siderations about conventional values apply for the Bayes fac-
tor (Kass and Raftery 1995; Spiegelhalter, Abrams, and 
Myles, 2004, p. 55) and the other measures of the weight of 
evidence, although statisticians haven’t agreed on conven-
tional critical values for some of the measures. 

In situations where comparisons are possible, it is inter-
esting to compare the different measures of weight of evi-
dence (when used with their conventional critical values) in 
terms of their false-positive and false-negative error rates. If 
we do this, we see that the conventional critical values for the 
Bayes factor are stricter than the conventional critical p-val-
ues. This implies that, for a given research design, the Bayes 
factor with a conventional critical value will make fewer 
false-positive errors than the p-value with a conventional crit-
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ical value. But, of course, this also implies that the Bayes fac-
tor will make more false-negative errors than the p-value if 
both use their conventional critical values. 

As noted in appendix B.8, researchers prefer low false-
negative error rates (i.e., they prefer critical values that aren’t 
strict) because this makes it easier and less expensive for their 
research to obtain statistical significance and thereby (if eve-
rything else is satisfactory) be published. But journal editors 
prefer low false-positive error rates (i.e., they prefer critical 
values that are strict) because this helps to reduce the publi-
cation of misleading false-positive errors in the research liter-
ature.  

Journal editors are the final arbiters of the critical value 
for a test statistic in the sense that a key hurdle for any report 
of a research project is to be accepted for consideration for 
publication in a journal. This is the first step toward being ac-
cepted for publication in the journal. Generally, each journal 
that is statistically oriented will indicate that a paper will only 
be considered for publication in the journal if the relevant test 
statistic is equal to or better than the journal’s critical value. 
For example, nowadays higher-impact journals that are statis-
tically oriented generally require that the main p-value in a 
research project be less than or equal to 0.01 before the report 
of the research project will be considered for publication. 

Some statisticians recommend lower conventional critical 
p-values (Johnson, 2013; Bayarri, Benjamin, Berger, and 
Sellke 2016; Johnson, Payne, Wang, Asher, and Mandal 
2017). This is based on the perception that “too many” false-
positive results are being published in the scientific research 
literature. 

Benjamin, Berger, …, and Johnson (72 authors, 2017) rec-
ommend that a critical p-value of 0.005 be used for “claims 
of new discoveries”. However, interestingly, these authors 
distinguish their recommended critical value from the critical 
p-value that is used as a screening rule for publication. And in 
their “Concluding remarks” section they “emphasize” that 
journals can continue to use a critical p-value of 0.05 (or 
lower, at each journal’s discretion) as a screening rule to de-
termine whether the results in a paper provide sufficient 
weight of evidence to consider the paper for publication.  

It may be true that too many false-positive results are be-
ing published in the research literature. If so, then it is man-
datory to use lower critical values in statistical hypothesis 
tests. This will lead to fewer false-positive results in the liter-
ature (although it will also increase the cost of scientific re-
search if we wish to maintain equivalent statistical power in 
hypothesis tests).  

Unfortunately, it is difficult or impossible to determine 
objectively whether “too many” false-positive results are be-
ing published in the research literature. This is because, as 
noted at the beginning of the present appendix, it is difficult 
or impossible to evaluate “too many” objectively. 

Arguably, it is sensible to be somewhat lenient in setting 
critical values for publication in scientific hypothesis testing 
so that interesting results can be published and therefore 
brought to light. This allows other researchers to know about 
relationships between variables that may exist. This suggests 
that setting the critical p-value at 0.005 may be too strict. 

Of course, even if we use a very strict critical value for a 
test statistic, we must keep firmly in mind that a certain (gen-
erally unknown) percentage of published positive research re-
sults that satisfy this critical value are actually false-positive 
results, as shown in the figure in appendix B.11. However, the 
presence of these false-positive results in the research litera-
ture isn’t a serious problem because, as noted, if a research 
result is potentially important, then we can easily eliminate 
(well, almost eliminate) the possibility that the result is a 
false-positive result if somebody performs a successful care-
ful independent replication of it.  

We must replicate a research result even if the result is 
highly statistically significant. We must replicate to reduce 
the possibility that the result is a fluke, and to reduce (through 
a re-examination of the issues) the possibility that there is a 
reasonable alternative explanation for the result. Arguably, re-
gardless of how low the relevant p-value is, we must always 
properly replicate a research result before we can trust it be-
cause mistakes happen.  

Thus we see again that the p-value (and each other meas-
ure of the weight of evidence) doesn’t make decisions in any 
important sense. Instead, the p-value is merely a sensible 
measure to help researchers to decide what to believe. The 
decision about whether an effect exists is made by the relevant 
scientific community. The community makes the decision by 
evaluating a broad range of information, often including (a) 
relevant p-values (or other sensible measures of the weight of 
evidence), (b) knowledge of successful or unsuccessful repli-
cations, and (c) careful consideration of possible alternative 
explanations. 

Appendix D: Teaching p-Value Concepts to 
Beginners  

The p-value is arguably the most commonly used method 
for detecting relationships between variables in scientific re-
search. Therefore, if a person wishes to understand the study 
of relationships between variables, then he or she must under-
stand the p-value.  

The concept of the p-value is somewhat complicated. 
Therefore, proper understanding of the p-value is a pons asi-
norum (bridge of fools) on the road to a proper understanding 
of statistics. Unfortunately, some beginners fail to cross the 
bridge. 

However, a proper understanding of the p-value is guar-
anteed if a student studies enough real-life examples of scien-
tific research projects that study relationships between varia-
bles when the null hypothesis is and isn’t rejected. Of course, 
the concept of “enough examples” depends on (a) the stu-
dent’s initial level of understanding, (b) the student’s ability, 
and (c) the quality of the examples. Examples work best if 
they are practical in the sense that there is an easily recog-
nized meaningful social, theoretical, or commercial payoff if 
the studied relationship between variables is found to be real. 

It is also important for students to study examples of rea-
sonable alternative explanations and examples of false-posi-
tive and false-negative errors. Again, the examples should be 
practical so that students can see the payoff of proper scien-
tific research. 
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It is arguably less appropriate to teach beginning students 
the underlying mathematics of p-values or the mathematics of 
model equations. This is because the mathematical ideas are 
somewhat complicated, and the computer can readily do all 
the math. Instead, beginning students must understand the 
function of the p-value and the function of the model equation 
in scientific research. Therefore, it is sensible to focus on (a) 
the usefulness of relationships between variables for accurate 
prediction or control, (b) the use of the p-value (or other valid 
methods) to detect relationships between variables, (c) the use 
of a properly derived model equation of a relationship be-
tween variables for accurate prediction or control, and (d) 
many practical examples of relationships between variables 
with obvious payoffs so that students’ thinking about relation-
ships becomes intuitive. 

In discussing a practical example of a relationship be-
tween variables, it is helpful to present beginning students 
with well formatted computer output. The first part of the out-
put should show five or so rows of the data that were used in 
the analysis. The columns of the data should be clearly la-
belled (with carefully chosen names, typically multiple 
words) to help to ensure that students will understand the re-
sponse variable and the predictor variable(s) that are under 
study. Students must understand the nature of the data being 
analyzed or the analyses will be disconnected from the real 
world and thus harder to understand. Usually showing only 
five rows together with the count of the actual number of rows 
in the full table is enough because the aim is to give students 
the gist of the data, not to overwhelm them with a sea of num-
bers. 

Next the output can show the results of the analysis of the 
data, showing descriptive statistics, test statistics, p-values, 
possibly other measures of the weight of evidence that an ef-
fect is real, and carefully drawn graphs to illustrate any rela-
tionships between variables that are (apparently) discovered. 
The teacher can explain to the students what each item in the 
output tells us, explaining that some of the statistics are in-
cluded for thoroughness, but are much less important than 
others.  

For students who like to think, it is recommended that they 
be given exercises to design research projects in areas of in-
terest to them. They should first choose a response variable 
they would like to learn to predict or control. Then they can 
choose one or more predictor variables that the response var-
iable might be related to. (Students need guidance here be-
cause some variables they choose are impractical.) Then they 
can decide whether they must merely observe the predictor 
variable(s) in an observational research project or whether 
they can manipulate the predictor variable(s) in an experi-
ment. Next, the students can design an observational research 
project or an experiment to study the relationship of interest, 
specifying how the entities in the sample will be selected from 
the population, specifying how the response and predictor 
variables will be measured, specifying the detailed steps to 
perform the research project, discussing expected outcomes, 
and discussing possible alternative explanations for any re-
sults they might obtain. Students’ proposed research projects 
can be presented to the class and constructively criticized by 

the teacher and by the other students, showing students how 
scientific logic works. 

If there is enough time, and if the students’ research pro-
jects are performable, then the students can actually perform 
the research projects and obtain relevant data. Then they can, 
with the teacher’s help, analyze the data to look for evidence 
of the sought-after relationships between variables. 

It is recommended that most courses for beginners not in-
clude any data-analysis computer programming. Of course, 
the programming is conceptually simple—we give the data 
and some simple instructions to the computer, and the com-
puter analyzes the data and generates the relevant output. But 
from a practical point of view, programming is surprisingly 
complicated. This is because there are many minor but neces-
sary details in syntax, options, and data management, all of 
which must be correctly handled before a program will work 
properly. Thus in a course for beginners that includes com-
puter programming, the multitude of the programming details 
tend to become the center of attention as students strive to 
master them. But understanding the research ideas and under-
standing the computer output is much more important than 
understanding the programming details, which are important, 
but aren’t central, and which can come in later courses for 
students who wish to learn more about scientific research.  

Appendix E: A Case When We Don’t Need a Meas-
ure of Weight of Evidence 

The discussion in section 4 suggests that we generally 
need a measure of the weight of evidence that an effect dis-
covered in scientific research is real in the population of enti-
ties of interest. This appendix discusses an instructive excep-
tion. 

For this discussion it is useful to split the study of relation-
ships between variables into two cases—the case in which the 
response variable is a continuous variable and the case in 
which the response variable is a discrete variable. A variable 
is a “continuous” variable if it can (at least in theory) have any 
value within some continuous range of values (where the 
range is usually a numeric range, though it needn’t be). A 
large percentage of scientific research projects have a contin-
uous response variable. If a variable isn’t a continuous varia-
ble, then it is a “discrete” variable, having a (usually finite) 
discrete set of possible values, perhaps as few as only two 
possible values. 

If the response variable in a scientific research project is a 
continuous variable, and if the model equation is a sum of 
terms (as is typical with continuous response variables), then 
an elementary statistical theorem shows that the variance of 
the sum of the terms in the equation is equal to the sum of the 
variances of the individual terms (plus double the sum of the 
unique covariances, if relevant). Therefore, adding terms for 
unnecessary predictor variables to an additive prediction 
equation always tends to increase the variance and therefore 
increases the standard error of the predicted values of the re-
sponse variable, which amounts to a decrease in the precision 
of the predictions made by the model equations. (The increase 
in variance from adding a term will often be small and may be 
nullified or reversed if a real relationship between the added 
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predictor variable[s] and the response variable actually exists. 
Negative covariances are generally too small to cancel out the 
extra variance from adding a term.) 

Also, in the case of a continuous response variable, if we 
add unnecessary terms to a model equation, then the uncer-
tainty of the parameter estimates for terms already in the equa-
tion is almost always increased, as proven in the case of linear 
regression analysis by Sen and Srivastava (1990, sec. 11.2.3). 
This increase in uncertainty of parameter estimates is argua-
bly undesirable, although it is also possible to argue that the 
uncertainty of the parameter estimates is less important and it 
is the uncertainty in the predictions that is relevant. 

Also, adding unnecessary predictor variables to a model 
equation violates the principle of parsimony. Also, adding un-
necessary predictor variables to a model equation implies that 
we must measure the unnecessary variables whenever we 
wish to use the equation, and this measurement of unneces-
sary variables adds an unnecessary extra cost. 

Therefore, adding unnecessary terms to a model equation 
with a continuous response variable is undesirable. Thus we 
wish to avoid including a predictor variable in a model equa-
tion with a continuous response variable unless we have good 
evidence that this variable is related to the response variable. 
Thus researchers generally strive to eliminate unnecessary 
predictor variables from a model equation if the response var-
iable in the equation is a continuous variable. Thus if the re-
sponse variable is continuous, we need a measure of the 
weight of evidence that a term belongs in the equation to help 
us to determine whether we should include or exclude each 
available term for the equation. 

Consider now the case when the response variable is a dis-
crete variable. If a discrete response variable has a small num-
ber of possible (discrete) values, then the arguments above for 
omitting unnecessary terms generally still apply, and includ-
ing unnecessary predictor variables in an equation will unnec-
essarily increase cost and complexity. But if a discrete re-
sponse variable has a large number of possible values (e.g., 
more than 100 or so values), then things change. 

In particular, consider the problem of computer pattern 
recognition, which is an important extreme case. This prob-
lem is easily viewed as the study of a relationship between 
variables in which the predictor variables are variables that 
describe a particular observed state of nature as recorded in a 
data table, and the response variable is some form of a proper 
“description” of the pattern observed in data, which is also 
recorded in the data table when we are deriving the model 
equation. For example, in handwriting recognition, the pre-
dictor variables are a set of variables that describe an image 
of handwriting, and the response variable is a character string 
that is a digital representation of the text in the handwriting. 
Handwriting recognition software uses an internal representa-
tion of the relationship between the variables to predict the 
digital character string from a handwriting image. 

Similarly, in general image recognition the predictor var-
iables are a set of variables describing an image (typically, the 
color and intensity of each pixel in the image) and the re-
sponse variable is a plain-language description of the image, 
such as “a woman throwing a Frisbee in a park” (LeCun, Ben-
gio, and Hinton, 2015). Similarly, in speech recognition the 

predictor variables are a set of variables describing the time-
varying pitch and intensity of the sounds of spoken words that 
are received by the system’s microphone and the response 
variable is a character string of the text for the words that the 
system “heard”. 

Pattern recognition problems often aren’t viewed as stud-
ying relationships between variables. But these problems can 
be readily viewed as studying relationships by viewing the in-
puts to such systems as the (rather complicated) values of pre-
dictor variables and by viewing the output as the value of a 
discrete response variable (with a large number of possible 
values). Arguably, this unifying view of pattern-recognition 
problems helps to increase understanding. 

Modern pattern-recognition software systems are surpris-
ingly practical in the sense that some such systems are now 
more efficient for many users than traditional systems. For 
example, many users accept and use speech-recognition sys-
tems for text entry and for command entry in hand-held elec-
tronic devices and personal computers. Users have found that 
using speech-recognition software to enter text and com-
mands is significantly more convenient than typing the text 
on a keyboard, even for fast typists with good keyboards. 

As noted, in the case of continuous response variables, we 
usually derive a model equation in which we omit irrelevant 
predictor variables. But if we examine modern pattern-recog-
nition software (e.g., neural network software) in which a 
model equation for the relationship between the variables is 
developed by the software, the software typically makes no 
direct attempt to identify and omit “irrelevant” predictor var-
iables from the broad set of predictor variables it is allowed 
to use. This is because a predictor variable that is “irrelevant” 
in one situation may be highly relevant in another. 

Generally, we never see the internal model equation in 
pattern-recognition software. This is because the equation is 
developed by the software inside the computer and is typically 
actually a highly complicated and difficult-to-interpret net-
work of equations that have been “naturally” selected through 
“training” of the software with many earlier instances (sam-
ples) of the various types of patterns under study. Thus the 
precise nature of the relationship between the variables is ob-
scure. However, if we study the low-level details of the soft-
ware, we see that the response variable is mathematically con-
nected to the predictor variables by a large complicated net-
work of mathematical relationships (equations).  

The relationships between variables in pattern-recognition 
software may mathematically emulate the complicated elec-
trochemical relationships between variables that occur at a 
low level between the neurons of a biological living brain.  

Thus, at a high level, pattern-recognition software works 
in the sense that it merely observes certain regularities in the 
data it was trained with and it uses these regularities to de-
velop in a complicated internal model equation to predict the 
values of the response variable in new entities from the pop-
ulation of entities (e.g. images or utterances) that it is designed 
to interpret. 

For the present discussion the main point is that we can 
view pattern-recognition systems as studying relationships 
between (a) a set of predictor variables and (b) a discrete re-
sponse variable with a large number of possible values. And 
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pattern-recognition systems generally take account of all of 
the chosen predictor variables, making no attempt to deter-
mine whether certain of them are irrelevant in predicting the 
values of the response variable. Thus pattern-recognition sys-
tems generally don’t use or need a measure of the weight of 
evidence that a relationship exists between variables. And all 
the chosen predictor variables are included in the network of 
equations because each predictor variable will play a relevant 
role some of the time. 

In view of the preceding points, this paper holds that meth-
ods for detecting good evidence of the existence of relation-
ships between (a) one or more predictor variables and (b) a 
response variable are useful. But it acknowledges that such 
methods are unnecessary in some cases, such as the case with 
a discrete response variable when this variable has a large 
number of possible values, as in pattern-recognition prob-
lems. 

Appendix F: Details About Alternatives to the p-
Value 

This appendix compares the p-value with seven other sen-
sible measures of the weight of evidence that an effect ob-
served in scientific research is real in the population of entities 
under study. 

First, we consider some similarities among the measures. 
All of the measures of the weight of evidence (including the 
p-value) are similar in the sense that (with certain limitations) 
they can all be easily viewed as performing the same func-
tion—as performing a test of the research hypothesis that a 
certain effect (typically a relationship between variables) ex-
ists in the population of entities behind the sample. 

In any given situation in which we wish to test a research 
hypothesis, all the measures of the weight of evidence are also 
similar in the sense that (when applicable) they are all derived 
from the estimated sampling distribution of the same param-
eter (or test statistic), which is generally a relevant parameter 
of the relevant model equation, as discussed in the case of the 
p-value in appendices B.4–B.8. In view of the mathematical 
details of how these measures are derived (from research data) 
from the same estimated parameter sampling distribution, it is 
easy to show that these measures (including the standard p-
value) are all monotonically related to each other.  

That is, the expected values of these measures (and the 
actual estimated values) will all change in monotonic syn-
chrony with one another if (with other things being constant) 
the size of the effect under study were somehow made larger 
or smaller in the population. (The measures are, in effect, all 
connected to each other by a complicated set of mathematical 
gears.) Therefore, although the scales are different, the 
measures are all roughly functionally equivalent in providing 
a measure of the weight of evidence that an effect observed in 
scientific research data is a real effect in the underlying pop-
ulation.  

The monotonic relationships between the various 
measures generally aren’t linear relationships. But the rela-
tionships are all smooth, as illustrated graphically in appendix 
G.  

It is noteworthy that the form of the monotonic relation-
ships between the measures sometimes depends on the re-
search situation. For example, in one research situation there 
will be one relationship between in a given p-value and the 
associated Bayes factor as the effect size changes. But in an-
other research situation there will be another monotonic rela-
tionship between the given p-value and the Bayes factor as the 
effect size changes. The differing relationships between the 
measures of the weight of evidence are due to other factors 
that play a role in the relationships. For example, in the case 
of the Bayesian approaches, the prior distribution and the 
sample size both play roles in the relationships. (The sample 
size is involved through the Jeffreys-Lindley paradox, which 
reflects the fact that certain Bayesian measures are dependent 
on the sample size, as discussed in appendix L.)  

Furthermore, with certain important exceptions (discussed 
below), the measures of the weight of evidence usually all 
have roughly the same statistical power for finding good evi-
dence that an effect is real in the population (assuming that 
we use an “equivalent” critical value with each measure). 

It is important to ask whether any of the alternatives to the 
p-value can escape from the problems with the p-value that 
are discussed in section 6 in the body of this paper. Unfortu-
nately, due to performing the same function, and due to the 
monotonic relationships between the other measures and the 
p-value, it is easy to see that many of the same general prob-
lems arise with the alternatives to the p-value (though some-
times the problems assume different forms). For example, all 
of the approaches sometimes make false-positive and false-
negative errors and all are prone to usage or interpretation er-
rors, just like the p-value. 

Of course, the problem of the definitional complexity of 
the p-value isn’t directly present with the other measures be-
cause they are differently defined. But a parallel problem of 
definitional complexity arises across the board—each meas-
ure is somewhat hard to understand. 

All of the measures of the weight of evidence can use a 
“critical value” to help us to decide whether we have enough 
evidence that an effect is real. (The concept of “critical value” 
takes a somewhat different form with confidence intervals, 
but is logically equivalent.) If the value of the measure is on 
one side of (or equal to) the chosen critical value, then (by 
widely accepted convention) this is good evidence (in the ab-
sence of a reasonable alternative explanation) that the effect 
under study is real in the population—good evidence that we 
can reject the null hypothesis. In contrast, if the value of the 
measure is on the other side of the critical value, then we have 
no good evidence that the observed effect is real. 

All of the measures of the weight of evidence are based on 
certain underlying assumptions. In particular, a key assump-
tion underlying all the measures is that the entities in the sam-
ple are sufficiently representative of the entities in the popu-
lation of interest for us to draw meaningful conclusions from 
the sample data about the population. Ideally, the sample 
should be a “random” sample from the population because 
then if everything is done properly, correct generalizability is 
mathematically all but guaranteed. Statisticians have derived 
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efficient approaches to draw random samples from popula-
tions to assist in the study of relationships between variables, 
as discussed in statistics textbooks. 

Although random sampling is preferred, it is somewhat 
expensive, so researchers sometimes use a “convenience” 
sample, especially if the population is reasonably homogene-
ous. In this case, generalizability is more tenuous. However, 
we can safely conclude that the results of an analysis can be 
generalized to other entities that are “sufficiently similar” to 
the entities in the sample, although the idea of “sufficiently 
similar” is somewhat vague. 

Also, if the response variable is continuous, often a key 
assumption underlying the computation of measures of the 
weight of evidence that an effect is real is that the “errors” in 
predictions made by the model equation are uncorrelated and 
have a normal distribution with constant variance. (Proce-
dures also exist for cases when this assumption is violated.) 

Fortunately, the relevant assumptions underlying a 
properly applied measure of the weight of evidence are often 
adequately satisfied in proper scientific research. However, 
regardless of which method(s) we use to study a relationship 
between variables (or to study some other effect), we must 
confirm that the relevant assumptions underlying the 
method(s) are adequately satisfied before we can trust the 
analysis. Unfortunately, some beginners are unaware of the 
underlying assumptions of statistical methods and therefore 
use the methods without confirming that the assumptions are 
adequately satisfied. This can lead to serious errors, as illus-
trated by Macnaughton (2016). 

Fortunately, confirming that the underlying assumptions 
of a statistical method are adequately satisfied is becoming 
much easier. This is because some modern statistical software 
performs the necessary computations for checking the as-
sumptions as an automatic default part of the analysis, pre-
senting the results of the computations in an easy-to-under-
stand carefully labelled format in the computer output. This 
makes it much easier for users (and encourages them) to check 
whether the underlying assumptions are adequately satisfied. 
For example, the main linear regression program in the SAS 
system now (by default) automatically computes and displays 
a sensible set of regression diagnostic plots, and can automat-
ically compute many other diagnostic plots and statistics on 
request. Some other software systems feature similar auto-
matically generated or easy-to-generate diagnostic infor-
mation, as one can see by checking software manuals. 

Let us compare the p-value with the other measures of the 
weight of evidence to try to decide which one is best. The fol-
lowing seven subsections consider comparisons between (a) 
the p-value as a measure of the weight of evidence and (b) 
each of the seven alternatives to the p-value as a measure of 
the weight of evidence that an effect observed in scientific re-
search is real.  

F.1. Student’s t-Statistic 

Consider Student’s t-statistic as a measure of the weight 
of evidence that an effect observed in scientific research data 
is real in the underlying population. The t-statistic is the ratio 

of (a) the distance of the estimated value of the relevant pa-
rameter from the relevant null value to (b) the estimated stand-
ard error of the parameter estimate.  

Since the null value of a parameter is typically zero, the 
distance of the parameter estimate from the null value is typ-
ically simply the estimated value of the parameter itself. 
Therefore, the t-statistic is typically simply the ratio of the pa-
rameter estimate to its estimated standard error. Of course, 
Student’s t-statistic is the mathematical signal-to-noise ratio 
for the effect under study. 

(The t-statistic was invented by Gosset [1908] who wrote 
under the pen name of “Student” to help to hide his invention 
from his employer’s competitors.) 

Researchers in the physical sciences sometimes use Stu-
dent’s t-statistic (perhaps not naming it) as a measure of the 
weight of evidence that an observed effect is real in the un-
derlying population, sometimes using a critical value of 2. If 
the absolute value of the t-statistic for a parameter estimate is 
greater than the critical value of 2 (i.e., the estimated value of 
the parameter is more than two standard errors away from 
zero—i.e., the signal-to-noise ratio for the parameter is 
greater than 2), then (by convention, and in the absence of a 
reasonable alternative explanation) we have good evidence 
that the effect under study is real. 

Some researchers in the physical sciences use critical val-
ues for the t-statistic that are much higher than 2, sometimes 
as high as 5, represented as 5σ. Using a critical value for the 
t-statistic of 5 is (assuming 30 degrees of freedom) equivalent 
to using a critical p-value of roughly 0.000023. Using such a 
high critical value for the t-statistic (or using such a low crit-
ical value for the p-value) generally requires that the re-
searcher use a very large sample in order to obtain acceptable 
evidence of the existence of an effect, which obviously in-
creases research costs, as illustrated by Della Negra, Jenni, 
and Virdee, 2012. However, using such a strict critical value 
makes it highly unlikely that any discovered positive effect 
reflects a false-positive error. 

We can see the mathematical linkage between the t-statis-
tic and the p-value by noting that most introductory statistics 
courses explain how (in relevant situations) the t-statistic is 
the mathematical basis for computing the relevant p-value (in 
Student’s t-test). It is easy to show that the larger the absolute 
value of the t-statistic, the smaller the derived p-value. And it 
is easy to show that using a critical t-value of 2 is roughly 
equivalent (in the sense of providing a positive or negative 
result) to using a critical p-value of 0.05. 

 Mathematically, the t-statistic is substantially easier to 
understand than the associated p-value because the t-statistic 
comes first in the mathematical development of the ideas. 
And the p-value (in the t-statistic case) is a mathematical ex-
tension that is built atop the t-statistic. 

However, the p-value is slightly purer than the t-statistic 
as a measure of the weight of evidence that an effect is real 
because the p-value takes full account of the sample size 
(through the relevant underlying degrees of freedom), which 
the t-statistic doesn’t do. Thus in mathematical and logical 
senses, the p-value is slightly more sensible than the t-statistic 
as a measure of the weight of evidence that an effect observed 
in scientific research is real in the underlying population. 
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Also, the p-value is substantially more general than the t-
statistic because the p-value readily operates in areas where 
the t-statistic doesn’t apply. In particular, in addition to sum-
marizing the tail-area probability of the distribution of the t-
statistic, the p-value can also summarize the tail-area proba-
bilities of the distributions of other important test statistics 
that are used in scientific research, such as the F-statistic and 
the chi-square statistic. The p-value enables these summaries 
to all be on the same relatively-easy-to-understand probability 
scale that ranges between zero and one. 

In summary, in cases when it is applicable, the t-statistic 
is a sensible measure of the weight of evidence that an effect 
observed in scientific research is real in the underlying popu-
lation, with an easy-to-understand conceptual derivation in 
terms of the signal-to-noise ratio. The t-statistic is an im-
portant waypoint to understanding the p-value. But (a) the fact 
that the t-statistic doesn’t take full account of the sample size, 
and (b) the lack of generality of the t-statistic imply that the 
p-value is preferred to the t-statistic as a universal measure of 
the weight of evidence that an effect observed in scientific re-
search is real in the members of the population of entities un-
der study. 

F.2. Confidence Interval 

Consider the confidence interval as a measure of the 
weight of evidence that an effect observed in scientific re-
search data is real in the underlying population. We can sen-
sibly view the operation of a confidence interval graphically 
by marking the estimated value of the relevant parameter on 
a number line and also marking the null value of the parameter 
on the line. Then we can superimpose the relevant confidence 
interval (as computed from appropriate research data) on the 
line, centering the interval on the null value. Then we can ex-
amine the line to see if the confidence interval overlaps the 
estimated parameter value. This is illustrated in appendix G. 

(Some researchers use a sensible equivalent way of doing 
this graphical operation, centering the same confidence inter-
val on the estimated parameter value and then checking to see 
if the interval overlaps the null value.) 

If we use a confidence interval as a measure of the weight 
of evidence that an effect is real, then the analogue of the idea 
of ‘critical value’ is whether the confidence interval for the 
parameter estimate (often a 95% confidence interval) overlaps 
the estimated value of the parameter. If the confidence inter-
val overlaps the estimated parameter value, then this implies 
that we have no good evidence that the parameter estimate is 
different from the null value in the population. In contrast, if 
the appropriate confidence interval doesn’t overlap the esti-
mated parameter value, then we have (in the absence of a rea-
sonable alternative explanation) good evidence that the value 
of the parameter is different from the null value in the popu-
lation. 

We can see the mathematical linkage between the confi-
dence interval and the p-value by noting that using a 95% con-
fidence interval is exactly equivalent (in the sense of provid-
ing a positive or negative result in the standard two-tail case) 
to using a critical p-value of 0.05. Of course, the fact that 95% 
and 5% (0.05) add to 100% isn’t a coincidence. 

The graphical interpretation of confidence intervals sub-
stantially assists understanding and suggests that confidence 
intervals may be easier to understand than p-values. However, 
the conceptual derivation of confidence intervals is obscure 
for beginners because they wonder: 
(a) Where does the confidence interval for the parameter ac-

tually come from? (Answer: It comes from the inferred 
sampling distribution and estimated standard error of the 
parameter estimate, although that isn’t easy for beginners 
to understand.) 

(b) How does lack of overlap of the confidence interval of 
the estimated parameter value pertain logically to reject-
ing the null hypothesis?  

These underlying questions imply that confidence inter-
vals are conceptually more complicated than their graphical 
representation might suggest. 

Furthermore, in the case of simple comparison of means 
(which in the simplest case is equivalent to the two-sample t-
test), we may use the idea that confidence intervals overlap 
one another, or the idea that the confidence interval for the 
difference between the means overlaps zero. These different 
approaches to confidence intervals add to the complexity of 
confidence intervals because beginners have difficulty shift-
ing among the approaches. In contrast, if we use the p-value 
in these cases, then the individual approaches are all hidden. 
Hiding the various approaches enables beginners to focus on 
the important scientific question (of whether a relationship 
exists in the population between the variables), as opposed to 
focusing on somewhat complicated and distracting issues of 
statistical methodology. Beginners should master the scien-
tific ideas first because otherwise the statistical procedures in-
tended to support the scientific ideas seem like complicated 
unjustified esoteric rituals. 

Furthermore, unlike the somewhat-well-known probabil-
ity scale of the p-value, the scale of a confidence interval is 
the scale of the parameter under study, which in the standard 
regression case is a rate—a mathematical first derivative. This 
scale is difficult for beginners to interpret. And, unlike the p-
value, the scale of the confidence interval generally changes 
to a different scale for each different parameter, which re-
quires the user to reorient to a new scale each time, which is 
difficult for beginners. 

Of course, the scale of the confidence interval can be con-
verted to the scale of the t-statistic, which turns it into an eas-
ier-to-interpret standardized scale. But then it is sensible to 
use the p-value associated with t-statistic for the reasons given 
in the preceding section. 

Furthermore, the computation of the p-value is mathemat-
ically straightforward in more complicated research situations 
such as in the case when we wish to determine if there is a 
statistical interaction between two or more predictor variables 
with respect to their joint relationship to the response variable. 
But it is generally difficult or impossible to use confidence 
intervals to study interactions. 

Of course, all the above problems with confidence inter-
vals generally also exist in convoluted form with p-values be-
cause confidence intervals and p-values are tightly linked 
mathematically. But if we use the p-value, and if we interpret 
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the p-value using the definition above in appendix B.7, then 
the problems with confidence intervals are sensibly hidden 
from beginners. The problems are hidden under the covering 
concept of “as discrepant from the null value as …”. It is sen-
sible to hide these technical matters from beginners until they 
have first mastered the relevant scientific ideas because oth-
erwise the technical matters seem to have no purpose. And, 
arguably, it is sensible, to the extent possible, to hide these 
technical matters from everybody, so that we can focus on the 
scientific problem, as opposed to the technical details of sta-
tistics. 

In summary, a confidence interval is a sensible measure 
of the weight of evidence that an effect observed in scientific 
research is real in the underlying population, with a some-
what-easy-to-understand graphical interpretation. However, 
confidence intervals (a) are harder to understand from the 
point of view of scientific function than p-values, (b) lack a 
center-of-focus common scale like the p-value, and (c) are 
difficult or impossible to use in more complicated situations. 
Therefore, the p-value is preferred to the confidence interval 
as a universal measure of the weight of evidence that an effect 
observed in scientific research is real in the members of the 
population of entities under study. 

F.3. Likelihood Ratio 

Consider the likelihood ratio as a measure of the weight 
of evidence that an effect observed in scientific research is 
real in the underlying population. The next three paragraphs 
give a technical description of the likelihood ratio, which 
some readers may wish to skip. 

The likelihood ratio for an effect is the ratio of the heights 
of two estimated maximum-likelihood marginal probability 
density functions for the parameter at the value of the param-
eter. These concepts are illustrated graphically in appendix G. 

The numerator of the likelihood ratio is the height of the 
estimated (probability) density function for the parameter for 
the effect that we obtain if the null hypothesis for the param-
eter is or were true in the population and if we measure the 
height at the estimated value of the parameter. In computing 
this height, the values of any other parameters in the model 
equation are set at their maximum-likelihood estimated val-
ues.  

The denominator of the likelihood ratio is the height of the 
estimated density function for the parameter that we obtain if 
the research hypothesis for the parameter is or were true and 
if the true value of the parameter in the population is equal to 
the actual estimated value of the parameter and if we measure 
the height of the implied density function at the estimated 
value of the parameter. As before, the values of the other pa-
rameters are set at their maximum-likelihood estimated val-
ues. 

Under the preceding definition, the numerator of the like-
lihood ratio is always less than the denominator. This implies 
that the likelihood ratio always lies between 0.0 and 1.0 
(Wackerly, Mendenhall, and Scheaffer, 2008, p. 550).  

Some researchers (e.g., Cox, 2006, p. 91) use the inverse 
of the likelihood ratio discussed in the preceding paragraphs 

because the inverse is also reasonable. The fact that the like-
lihood ratio has two possible definitions is unfortunate be-
cause it leads to confusion. Therefore, in any discussion of the 
likelihood ratio it is important to say at the beginning which 
approach is being used. The present paper uses the approach 
to the likelihood ratio discussed in the first four paragraphs of 
this subsection because this approach appears to be somewhat 
more popular. But the inverse approach is arguably somewhat 
more intuitive because it is in an increasing relationship with 
the effect size. 

If the null hypothesis is true in a given research situation, 
then the likelihood ratio will be close to 1.0. In contrast, if the 
research hypothesis is true, then the likelihood ratio will be 
lower. Therefore, in theory, we can specify a critical value for 
the likelihood ratio. And we can decide that we have good 
evidence that a relationship exists between the relevant varia-
bles if the value of the likelihood ratio is less than the speci-
fied critical value. However, in actual practice, this approach 
isn’t often used. Instead, we compute the fraction of the time 
that the value of the likelihood ratio will be as low as it is or 
lower if the null hypothesis is or were true (and if other rele-
vant assumptions are adequately satisfied). Of course, com-
puting this fraction amounts to computing a p-value. So using 
a likelihood ratio can be viewed as merely another sensible 
path to computing an appropriate p-value. 

However, if we study actual practice in scientific research, 
we find that researchers rarely use likelihood ratios either to 
compute p-values or for other approaches for testing for the 
existence of a relationship between variables. This may be 
partly because the likelihood-ratio approach often gives the 
same p-values as conventional approaches (Wackerly, 
Mendenhall, and Scheaffer, 2008, p. 553), but the likelihood 
ratio concepts are arguably somewhat harder to understand 
than the conventional approaches. 

The likelihood-ratio concepts are harder to understand be-
cause the ratio of two heights of the estimated marginal prob-
ability density functions of a parameter under the two hypoth-
eses is harder to understand than the probability [fraction of 
the time] that a particular estimated parameter value will be 
as discrepant or more discrepant from the null value if the null 
hypothesis is or were true. This difficulty of understanding the 
likelihood ratio arises from the difficulty people who aren’t 
statisticians have understanding the concept of the probability 
density function (likelihood function) for a parameter. 

The likelihood ratio approach is also harder to understand 
because it uses two distributions—the estimated probability 
density function of the parameter under the null hypothesis 
and the estimated probability density function under the hy-
pothesis that the population value of the parameter is equal to 
the value estimated from the sample. In contrast, the p-value 
uses only a single distribution—the estimated sampling dis-
tribution of the values of the parameter (if the research is re-
peated over and over) if the null hypothesis is or were true. 
And the p-value is able to keep this distribution in the back-
ground, which helps to reduce the perceived complexity. 

The likelihood ratio approach may also be used less often 
because the mathematical distribution of the likelihood ratio 
is sometimes difficult to compute, and formulas for the distri-
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bution are only available in the “asymptotic” sense, which im-
plies that the formulas (and hence the p-values derived from 
the formulas) are only fully correct if the sample size is infi-
nite, which of course never happens. Fortunately, these as-
ymptotic approaches give “fairly good” answers for typical 
sample sizes. However, this leads researchers ask whether 
“fairly good” is good enough for the particular situation at 
hand, and there is presently no easy answer to that question. 

In summary, the likelihood ratio is a sensible measure of 
the weight of evidence that an effect observed in scientific re-
search is real in the underlying population. But likelihood ra-
tios are rarely used in practice. The rare direct use of the like-
lihood ratio together with the greater complexity of the likeli-
hood ratio suggests that the p-value is preferred to the likeli-
hood ratio as a measure of the weight of evidence that an ef-
fect observed in scientific research is real in the underlying 
population. 

F.4. Bayes Factor 

Consider the Bayes factor as a measure of the weight of 
evidence that an effect observed in scientific research data is 
real in the underlying population. The next paragraph gives a 
technical description, which some readers may wish to skip. 

The Bayes factor for a parameter of a model equation is a 
ratio of two numbers that is similar to the likelihood ratio. In 
the case of the likelihood ratio we determine the two numbers 
in the ratio by (for each) mathematically maximizing the like-
lihood across all of the parameters of the model equation un-
der the relevant hypothesis. For one of the numbers, the null 
hypothesis is the relevant hypothesis and for the other number 
the research hypothesis (in the specific form directly implied 
by the data) is the relevant hypothesis. In contrast, in the case 
of the Bayes factor we determine conceptually nearly the 
same two numbers by (for each) mathematically integrating 
the likelihood across all of the parameters of the equation un-
der the relevant hypothesis, taking direct account in the inte-
gration of the “prior distribution” of each parameter. 

The Bayes factor is based on the same set of concepts as 
the p-value, t-statistic, confidence interval, and likelihood ra-
tio. But the Bayes factor takes account of an extra concept 
called the “prior distribution(s)” of the parameter(s) of the 
model equation. The prior distribution of a parameter is the 
estimated distribution of the parameter that we have somehow 
obtained prior to (or at least independently of) the research 
project. We include this distribution in the analysis because if 
the knowledge of the distribution is valid and reliable, then it 
increases the accuracy and precision of the results of the anal-
ysis.  

If there are multiple parameters in a model equation, then 
in a Bayesian analysis we generally specify a prior distribu-
tion for each of them. 

The idea of the prior distributions of the parameters of a 
model equation adds another puzzling layer of complexity 
above the complexity of the previously considered ap-
proaches. This extra complexity is also present in the mathe-
matics of the Bayesian approach. This extra complexity 
makes the Bayes factor and the Bayesian approach substan-
tially harder for researchers to understand. 

Furthermore, if we wish to compute a Bayes factor for a 
parameter of a model equation, then we must supply the prior 
distribution of that parameter and the prior distributions of all 
of the other parameters in the equation. Many researchers find 
it difficult to supply prior distributions for the parameters of a 
model equation because their research is at the leading edge 
of knowledge in their field, and therefore usually no prior in-
formation is available. And many researchers are uncomfort-
able trying to guess what the prior distribution might be, be-
lieving that guessing is somewhat arbitrary.  

Of course, we do allow guesswork in the initial framing of 
a scientific research hypothesis. This is because (educated) 
guesswork in framing the hypothesis (or hypotheses) is nec-
essary to define the research. But once we have guessed or 
postulated the research hypothesis, no more guessing is al-
lowed, And the goal of the research is to determine if our 
guessed research hypothesis is true.  

There is a noteworthy exception to the point in the preced-
ing paragraph: We also allow guesswork in scientific research 
in “power” computations in which we guess what we think 
the effect size for a relationship between variables will be. 
Then we compute the power of a given statistical test for de-
tecting an effect of that size. (The power is the fraction of the 
time that the test would successfully detect an effect of the 
specified size if the proposed research project were performed 
repeatedly.) But standard power computations are used only 
in research design. Thus (unlike the Bayes factor) the guess-
work in power computations plays no direct role in the anal-
ysis of research data. 

Also, the standard approach to computing the Bayes factor 
requires that we specify a specific research hypothesis in 
which the values of the parameters of the model equation have 
specific numeric values. For example, Bayarri, Benjamin, 
Berger, and Sellke specify a specific “point alternative” [i.e., 
research] hypothesis in computing Bayes factors (2016, p. 
93). Specifying such a specific hypothesis seems somewhat 
arbitrary. (Alternatively, we can compute Bayes factors by 
specifying the relevant values of the parameters under the re-
search hypothesis using the values of the parameters esti-
mated from the data, akin to the approach used in computing 
the likelihood ratio.) 

The Bayes factor is on a scale of odds. Thus if we obtain 
a Bayes factor of, say, 6.3 in favor of the research hypothesis, 
and if we have done everything properly, then the Bayes fac-
tor is telling us that the odds that the research hypothesis is 
true are estimated to be 6.3 to 1. Of course, these estimated 
odds will vary if we repeat the research project over and over, 
just like the p-value will vary, as illustrated in the figure in 
appendix B.12. In fact, the Bayes factor will vary in close syn-
chrony with the p-value (as the effect size varies) because the 
two concepts are mathematically tightly linked. 

Many people find that the concept of odds is somewhat 
harder to understand than the concept of probability, which is 
the basis of the concept of the p-value. People find odds 
harder to understand because the concept of “odds” is built 
atop the concept of “probability” in the sense that an odds is 
the ratio of two probabilities. 

Of course, the likelihood ratio is also an odds. But the 
Bayes factor is more versatile because it allows us to bring the 
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prior distribution into the analysis, which is sometimes an im-
portant advantage—an advantage that outweighs the added 
complexity. 

Like the p-value, the Bayes factor uses a critical value in 
the sense that statisticians have published recommended cut-
off (critical) values to help researchers to determine if a Bayes 
factor provides good evidence of an effect. For example, Kass 
and Raftery (1995, p. 777) suggest that Bayes factors greater 
than 3 are “positive” evidence that an effect is real and values 
greater than 20 are “strong” evidence that an effect is real. 
Similarly, Bayarri, Benjamin, Berger, and Sellke (2016, p. 96) 
recommend that a Bayes factor must be greater than 16 for us 
to decide that we have good evidence that an effect is real.  

As with the likelihood ratio, the reciprocal of any Bayes 
factor is also a Bayes factor. Of course, if a Bayes factor in-
creases as the effect size increases, then in the reciprocal of 
the Bayes factor decreases. Good (1958) and Kass and Raft-
ery (1995) use what we refer to below as the “traditional” ver-
sion of the Bayes factor. This version is in an increasing rela-
tionship with the effect size (and is therefore in a decreasing 
relationship with the p-value). However, Jeffreys (1961), 
Spiegelhalter, Abrams and Myles (2004, pp. 55, 132) and 
Held and Ott (2016) use the inverse form. Thus, in view of the 
possibility of ambiguity, it is important for any discussion of 
the Bayes factor to indicate which version is being used. The 
present paper uses the traditional version. 

It is noteworthy that automatically computed values of 
Bayes factors are unavailable in some modern commercial 
statistical software. (If automatically computed Bayes factors 
are unavailable in a software system, we can often still com-
pute them manually through custom programming, but that is 
somewhat complicated.) However, a few commercial soft-
ware products (e.g., Stata) can automatically compute Bayes 
factors, and some specialized software routines can also com-
pute Bayes factors, such as some specialized packages avail-
able for the freeware data-analysis language R (Morey, 
Rouder, and Jamil 2015; Park 2017).  

The inability of some commercial data-analysis software 
to directly compute Bayes factors is noteworthy because soft-
ware vendors know that they must stay current to remain com-
petitive. And it is relatively easy to compute Bayes factors 
analytically in standard situations, as noted by Kass and Raft-
ery (1995, sec. 4). The inability of some commercial data-
analysis software to compute Bayes factors may be partly due 
to the fact that it would be somewhat hard to implement the 
necessary specification of the prior distributions of parame-
ters to the software by the user, and perhaps partly due to low 
user demand for the ability to compute Bayes factors, perhaps 
due to the complexity of the concepts, or due to the difficulty 
in many analyses in choosing reasonable prior distributions 
that are beyond mere guessing. 

It is important to note that the Bayes factor has a signifi-
cant but rarely relevant advantage over the p-value: For a 
given false-positive error rate, the Bayes factor will always 
have higher statistical power for detecting relationships be-
tween variables than the standard p-value if we have a suffi-
ciently precise informative prior distribution of the relevant 
parameter (or test statistic). This is because the Bayes factor 

takes proper account of the meaningful information in an in-
formative prior distribution, which the standard p-value 
doesn’t do.  

Thus it is sensible to use the Bayes factor as a measure of 
the weight of evidence instead of the standard p-value if we 
have an informative prior distribution. (In some such cases, if 
we have an informative prior distribution, we also can use the 
alternative data-analysis procedure of meta-analysis.) But, 
unfortunately, in scientific research we rarely have informa-
tive prior distributions for the relevant parameters (or test sta-
tistics) because, as noted, in typical scientific research we are 
working at a leading edge of human knowledge where objec-
tive informative prior knowledge is almost always unavaila-
ble.  

One important case when we do have somewhat reliable 
prior information is the case of replication research. That is, 
if we are attempting to replicate an earlier research result, we 
could use the posterior distribution obtained in the earlier re-
search as the prior distribution in our current research. How-
ever, it seems inappropriate to let the research that we are try-
ing to replicate have any influence over the replicating re-
search because (for the sake of impartiality) we would like the 
replicating research to be completely independent of the orig-
inal research. So many researchers will agree that the Bayes-
ian approach is ruled out in this case. 

In order to remove some of the arbitrariness from the 
Bayesian approach, some Bayesian statisticians recommend 
that we use a “noninformative” prior distribution for each pa-
rameter, which is a “default” distribution, so we don’t have to 
guess what the prior distribution is. In this case, since there is 
no situation-specific information in the prior distributions, it 
is sensible to ask whether we could completely dispense with 
the prior distributions and instead use the simpler traditional 
“frequentist” approach.  

However, there are certain cases when the Bayesian ap-
proach can be shown to be unquestionably superior, such as 
when we have an informative prior distribution or when (for 
technical reasons) the relevant p-value or parameter estimates 
can’t be computed. Thus it is sometimes quite sensible to use 
the Bayesian approach instead of the frequentist approach. 

However, in view of the complexity of the Bayesian ap-
proach, any research project that uses it should justify the use. 
This is because if the researcher can’t acceptably justify the 
use of the Bayesian approach in simple language, then (if one 
accepts the principal of parsimony, and if one doesn’t prefer 
complexity for its own sake) it would be more sensible to use 
the simpler frequentist approach.  

In summary, the Bayes factor is a reasonable measure of 
the weight of evidence that an effect observed in scientific re-
search is real in the underlying population. But the p-value is 
easier to understand, is not based on an often-speculative prior 
distribution, and is theoretically as powerful as the Bayes fac-
tor in almost all situations. Therefore (except possibly in rare 
cases with a sufficiently informative prior distribution, or in 
any other case when the Bayesian approach is demonstrably 
superior), the p-value is preferred to the Bayes factor as a 
measure of the weight of evidence that an effect observed in 
scientific research is real in the members of the population of 
entities under study. 
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F.5. Posterior “Probability” that the Null Hypothe-
sis Is True 

The Bayesian approach enables us to compute the poste-
rior “probability” (or bounds on that “probability”) that a par-
ticular null hypothesis is true, as discussed by Berger and 
Sellke (1987), Sellke, Bayarri, and Berger (2001), 
Wagenmakers (2007, pp. 792-4), and Held and Ott (2016). 
This idea is intriguing because the probability that the null 
hypothesis is true seems (at least on the surface) substantially 
easier to understand than the p-value. 

Some statisticians refer to the probability that the null hy-
pothesis is true as “the probability of the null hypothesis”. 
However, that idea is somewhat ambiguous. So, arguably, it 
is clearer to refer to the idea as the probability that the null 
hypothesis is true. 

Perhaps the first thing to note about the “probability” that 
the null hypothesis is true is that many researchers believe that 
the null hypothesis in any scientific research project is never 
exactly true for an effect in a population, as discussed in sec-
tion 3.7 in the body of this paper. If the null hypothesis is 
never (or almost never) exactly true, then the probability that 
the null hypothesis is exactly true is always (or almost always) 
zero. Thus almost any non-zero estimate of this probability is 
presumably incorrect. 

However, we can bypass this issue by using the idea that 
the relevant null hypothesis may be “in effect” true. Here, by 
“in effect” we mean that a very weak relationship may exist 
between the variables. But if such a relationship exists, then 
it is too weak for us to detect (at least with our present re-
search), so there is no evidence that the relationship or effect 
is real, so the null hypothesis is in effect true, even though 
behind the scenes it may not be exactly true. 

Of course, also behind the scenes, the actual correct “prob-
ability” that the null hypothesis is true (or in effect true) is 
always either 0.0 or 1.0 because in any given research situa-
tion we believe that the null hypothesis is either true (or, 
equivalently, in effect true) or it is false. We are fully confi-
dent that either the null hypothesis or the research hypothesis 
is true and thus the other is false (because one is the logical 
negation of the other, and due to the logical law of “excluded 
middle”). 

Next, it is noteworthy that researchers don’t normally 
think in terms of the probability that the null hypothesis is 
true. This is because, as discussed above, we believe that in 
reality the null hypothesis is either true (or in effect true) or it 
is false. So we normally aren’t interested in a somewhat vague 
assessment of the “probability” that the null hypothesis is 
true. Instead, we want a reasonable approach that will enable 
us to decide (in the absence of a reasonable alternative expla-
nation) whether to believe that the null hypothesis is true (or 
is perhaps in effect true) or to believe that the null hypothesis 
is false. (Of course, we generally hope that we can obtain 
good evidence that the null hypothesis is false and, equiva-
lently, our research hypothesis is definitely true because this 
gives us new knowledge.) 

The concept of probability both in scientific research and 
in statistical theory is usually based on the notion of fre-
quency. Here “frequency” means the fraction of the time that 

some event will occur if we repeat the relevant conditions to 
observe the possible occurrence over and over, each time col-
lecting fresh data. Thus many probabilities in scientific re-
search and in the field of statistics (including p-values) can be 
interpreted in terms of the relative frequency that some event 
occurs (or would occur), based on actual or theoretical count-
ing or enumeration of events. But the posterior “probability” 
that the null hypothesis is true (as determined by Bayes’ the-
orem) generally isn’t determined by frequency considerations 
or by counting or enumeration of events. So it isn’t a standard 
type of probability. 

Suppose that the “probability” that the null hypothesis is 
true were determined by frequency considerations, and sup-
pose that we were to obtain a result indicating that the proba-
bility that the particular null hypothesis under study is true is, 
say, 0.52. Then the frequency considerations would enable us 
to say that the null hypothesis would be true roughly 52% of 
the time if we were to perform multiple independent instances 
of the relevant research project(s). But in the present case we 
can’t use the frequency interpretation, so we are faced with 
the question of what a “probability” of 0.52 means. In view of 
this issue, the word “probability” is generally in quotation 
marks in this subsection to remind us that we are considering 
a different interpretation of probability from the standard fre-
quency interpretation. 

Some Bayesian statisticians might argue that the posterior 
“probability” that the null hypothesis is true is a frequency-
based probability in a very general sense. But if we adopt this 
point of view, we still have the problem that this probability 
doesn’t reflect reality in the particular field of scientific re-
search in which we are working. This is because the prior 
probability that a null hypothesis is true in a given field of 
science depends on the percentage of tested research hypoth-
eses in the field that are actually true (as discussed in appendix 
B.11), and that rate almost certainly varies from one field of 
science to the next. And the rate of study of true research hy-
potheses will substantially influence the correct value of the 
probability that the null hypothesis is true in a given research 
situation.  

Unfortunately, the rate of study of true research hypothe-
sis in a given field of science is arguably difficult or impossi-
ble to determine. This is because there is (due to sensible cost 
considerations) insufficient tracking of negative results. But 
knowledge of the rate of negative results in a given field of 
science would be necessary to help us to determine the rate of 
study of true research hypotheses in the field.  

Since the probability that the null hypothesis is true in a 
given field of science depends on the rate of study of true re-
search hypotheses in the field, but since that rate is difficult 
or impossible to determine, therefore we can’t have a reliable 
indicator of the probability that the null hypothesis is true if 
we view probability in a frequency sense. So in a given re-
search project in a given field of science we can’t expect an 
estimate of the “probability” that in a particular null hypothe-
sis is true to be a reliable estimate of a meaningful relative 
frequency. 

Given that we can’t use the frequency interpretation of 
probability, how can we interpret the posterior “probability” 
that a given null hypothesis is true? A sensible approach is to 
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interpret the “probability” as simply being an abstract scale 
that ranges between zero and one. This scale gives us another 
measure of the weight of evidence that the research (or null) 
hypothesis is true. That is, the lower the posterior “probabil-
ity” that the null hypothesis is true, the greater the weight of 
evidence we have that the research hypothesis is true. 

It is noteworthy that the scale of the posterior “probabil-
ity” that a given null hypothesis is true has the same range 
(between 0.0 and 1.0) as the scale of the p-value. And it is 
easy to see that the p-value and the associated posterior “prob-
ability” that the null hypothesis is true will rise and fall in syn-
chrony with each other across scientific research projects—
the lower the p-value, the lower the posterior “probability” 
that the null hypothesis is true (because both measures depend 
monotonically on the effect size). However, in a given re-
search situation, if both values are computed, the posterior 
“probability” that the null hypothesis is true will usually be 
higher than the p-value. This fact doesn’t reflect a problem 
because the two scales are addressing the believability of the 
null hypothesis from different conceptual perspectives, so 
there is no contradiction in the fact that the two measures of 
the weight of evidence generally have different (but highly 
correlated) values.  

In a given research situation, if we wish to compute the 
posterior “probability” that a given null hypothesis is true, 
then we enter the prior “probability” that the hypothesis is true 
into the formula provided by Bayes’ theorem and we also en-
ter the data from the relevant research project into the for-
mula. The formula takes the two inputs and converts them (in 
a mathematically sensible way) into the posterior “probabil-
ity” that the null hypothesis is true. That is, the formula uses 
the data to improve on the prior “probability” that the null hy-
pothesis is true, thereby giving us the posterior “probability” 
that the null hypothesis is true. (Typically, we use a computer 
program to evaluate the formula because the evaluation is 
somewhat complicated.) If we do everything properly, the 
posterior “probability” is a better estimate of the actual correct 
“probability” that the null hypothesis is true. 

(Held and Ott [2016] eliminate the need to know the prior 
probability that the null hypothesis is true by proposing that 
we compute the minimum posterior “probability” that the null 
hypothesis is true, which is a statistic that can be computed 
and which is independent of the prior “probability”. However, 
a problem with this approach is that researchers generally 
don’t want to know the minimum possible “probability” that 
the null hypothesis is true. Instead, if a researcher is interested 
at all in this “probability”, then he or she wants a correct es-
timate of the “probability” that the null hypothesis is true.) 

In entering the prior “probability” that the null hypothesis 
is true into the formula, researchers typically have no 
knowledge of the actual correct value of this “probability”, so 
any value that we enter is typically somewhat speculative. 
However, if we ask a researcher at the beginning of a research 
project what they think is the prior “probability” that the rel-
evant null hypothesis is true, they will generally say that they 
think this “probability” is quite low. This is because if they 
thought the “probability” was high, then they wouldn’t be do-
ing the research because there would be no point. That is, if 
the “probability” that the null hypothesis is true is high, then 

the research would likely lead to a negative result, so (with 
rare exceptions, as in equivalence testing) the research would 
have no potential payoff.  

As noted, researchers generally can’t reliably know the 
prior probability that the null hypothesis is true. Therefore, 
conscientious researchers using this approach generally use a 
mathematically vague prior “probability”, such as 0.5. This 
reduces the chance of biasing the analysis, but still enables 
Bayes’ theorem to operate—enables the formula to compute 
the posterior “probability” that the null hypothesis is true. 

In a given research situation if there is a real relationship 
in the population between the variables, then the presence of 
the relationship will generally cause the posterior “probabil-
ity” that the null hypothesis is true to move away from the 
prior “probability” to a point that is closer to the actual correct 
value of zero. However, although the “probability” will often 
tend to move in the proper direction, there will invariably be 
noise in the data which will make the “probability” also move 
at random. 

We can use the posterior “probability” that the null hy-
pothesis is true as a measure of the weight of evidence that the 
effect under study exists in the underlying population. Thus 
we could define a critical value for this “probability” and say 
that if the “probability” that the null hypothesis is true is less 
than the critical value, then we can (tentatively) conclude (in 
the absence of a reasonable alternative explanation) that the 
null hypothesis is false and therefore the research hypothesis 
is true. 

However, presently there appear to be no scientifically de-
fensible critical values for the posterior “probability” that the 
null hypothesis is true. Therefore, if we wish to use this meas-
ure to detect relationships between variables, then we must 
use our intuition to decide whether the “probability” is low 
enough to give us enough evidence to conclude that an effect 
is real. Unfortunately, using intuition here is difficult because, 
as noted, the scale of this measure is an abstract scale, and 
isn’t a probability scale that we can interpret in the standard 
frequency sense. 

It is conceivable that statisticians will study the mathemat-
ical aspects of the posterior “probability” that the null hypoth-
esis is true and will derive sensible critical values for this sta-
tistic. (Or statisticians may derive sensible critical values for 
the movement of the statistic from the prior “probability” or 
sensible critical values for the minimum posterior probability 
that the null hypothesis is true.)  

The critical value for the posterior “probability” that the 
null hypothesis is true might be based on appropriately con-
trolling false-positive and false-negative errors, or it might be 
based on other sensible principles. However, in view of the 
Jeffreys-Lindley “paradox” discussed in appendix L, the crit-
ical value (of the posterior probability that the null hypothesis 
is true) that enables us to control the rate of false-positive er-
rors will vary (slightly) from one research situation to the 
next, depending on various aspects of the situation, such as 
the sample size. This variation in the critical value doesn’t in-
validate the approach. But the variation makes the approach 
more complicated than the p-value approach, which is able to 
consistently and sensibly use a single critical value that (if 
properly used) has the same logical interpretation (in terms of 
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false-positive errors) in all hypothesis tests for all sample 
sizes. 

In summary, the Bayesian posterior “probability” that a 
null hypothesis is true is a sensible measure of the weight of 
evidence that an observed effect is real in the underlying pop-
ulation. However, the concept of “probability” used with this 
concept is puzzling because it is different from the standard 
frequency interpretation of probability. And until someone 
defines sensible critical values for this “probability”, we must 
guess the appropriate critical values to help us to decide 
whether we can conclude that an effect is real in the underly-
ing population. Therefore, the p-value (with its well-estab-
lished and easy-to-interpret conventional critical values of 
0.05 or 0.01) is preferred to the posterior “probability” that 
the null hypothesis is true as an easy-to-understand measure 
of the weight of evidence that an effect (e.g., a relationship 
between variables) observed in scientific research is real. 

F.6. D-Value 

Consider the D-value (Demidenko 2016) as a measure of 
the weight of evidence that an effect observed in scientific re-
search data is real in the underlying population. Mathemati-
cally, in the simplest case, the D-value is a transformed ver-
sion of the associated p-value. That is [as Demidenko (2016) 
illustrates in his formulas (2) and (5)] the D-value uses exactly 
the same computing formula as the associated (one-sided) p-
value, except that the D-value formula replaces sample size, 
𝑛, that is used in the p-value formula with the numeral 1. In 
other words, Demidenko has removed the sample size from 
the formula because including the sample size is inappropriate 
for the purpose he envisions for the D-value. 

Demidenko proposes in both the abstract and the conclu-
sion of his article that a potential role or purpose of the D-
value in scientific research is “to weigh up the likelihood of 
events under different scenarios”. He also suggests in the last 
paragraph of the article that we should replace the p-value in 
scientific research with the D-value. These points suggest that 
Demidenko is proposing that we use the D-value for the same 
purpose as we use the p-value—as a measure of the weight of 
evidence that an effect (e.g., a relationship between variables) 
observed in scientific research is a real effect in members of 
the population of entities under study. 

Demidenko notes that in his standard two-group medical 
example the D-value is the proportion of patients in the sam-
ple who got worse after the treatment. This proportion is much 
easier to understand than the corresponding p-value for the 
hypothesis that the drug has a real effect on patients in the 
population. This ease of understanding of the D-value is an-
other reason why the D-value might be a good replacement 
for the complicated p-value as a measure of the weight of ev-
idence that an effect is real. 

However, from a theoretical point of view, it doesn’t make 
sense to use the D-value as a measure of the weight of evi-
dence that an effect is real because the D-value doesn’t take 
account of the sample size. And, as suggested by Demidenko, 
it seems more sensible to view the D-value as a measure of 
the strength of a relationship between variables or equiva-
lently, as Demidenko notes, “effect size on the probability 

scale” (2016, sec. 3.1). Or, as also suggested by Demidenko, 
the D-value is “the effect size expressed in terms of the prob-
ability of group separation” (2016, sec. 6). 

If we view the D-value as a measure of the strength of a 
relationship between variables—i.e., as a measure of effect 
size—then it is similar to and highly correlated with other 
measures of the strength of an effect, such as eta-squared, 
omega-squared, and 𝑟2, as listed by Sheskin (2007, pp. 129–
130, sec. VII). Measures of the strength of an effect are not 
good measures of the weight of evidence that an effect is real 
because the value of a proper measure of strength must be in-
dependent of the size of the sample that is used to estimate the 
value of the measure. Measures of strength must be independ-
ent of the sample size because the strength is a property of the 
underlying effect in the population, and the strength isn’t a 
property of the sample. (The sample size is relevant for esti-
mating the precision of an estimate of strength, but not in 
computing the estimate of strength itself.) 

In contrast, the sample size is directly relevant in deter-
mining the weight of evidence (provided by a research result) 
that an effect is real. That is, for a given observed effect size, 
a larger sample gives a greater weight of evidence that the 
effect is real than a smaller sample. This is due to the idea that 
(assuming proper sampling) the larger the sample, the more 
representative the sample test statistic (e.g., Student’s t-statis-
tic) is of the correct value of the statistic in the entire popula-
tion (due to the law of large numbers). And the more repre-
sentative a test statistic is of the correct value, the more con-
fidence we can have in conclusions drawn from the value of 
the statistic. 

Despite the fact that the D-value doesn’t take account of 
the sample size, we could still define critical values for the D-
value to enable us to use it as a sensible measure of the weight 
of evidence that an effect is real. However, for the D-value to 
work like the other measures, the appropriate critical values 
would need to be a function of the sample size. This would 
make using the D-value as a measure of the weight of evi-
dence that an effect is real substantially more complicated 
than using a measure that can sensibly use a single fixed crit-
ical value. 

Therefore, since the D-value doesn’t take account of the 
sample size, it isn’t an efficient measure of the weight of evi-
dence that an effect is real. Therefore, it isn’t sensible to eval-
uate the D-value as a measure of the weight of evidence that 
an effect is real in a population. And, contrary to Demidenko’s 
recommendation, it isn’t sensible to consider replacing the p-
value with the D-value because the two measures perform dif-
ferent functions. The p-value is a measure of the weight of 
evidence that an effect is real, but the D-value is sensibly 
viewed as a measure of the effect size (under the assumption 
that the effect is real). 

F.7. Information-Criterion Methods 

For completeness, another sensible method for detecting 
relationships between variables is to use an “information-cri-
terion” method, as discussed by Konishi and Kitagawa 
(2008). These methods yield model equations for relation-
ships between variables that are similar to or identical to the 
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model equations yielded by the other methods. When used ap-
propriately, these methods are in monotonic relationships 
with the other methods for measuring weight of evidence that 
an effect is real in the sense that if we were somehow able to 
change the size of an effect in the population, then the ex-
pected value of the relevant information criterion will change 
appropriately. However, these methods operate at a different 
level from the other measures—at a level that is midway be-
tween the level of the individual effects and the level of the 
entire equation. Researchers generally use the information-
criterion methods for detecting relationships less frequently 
than other methods, perhaps because the information-criterion 
methods don’t allow easy computation and control of false-
positive and false-negative error rates like some of the other 
methods. 

F.8. Graphical Methods 

As suggested in section 4 in the body of this paper, in 
cases where relationships between variables are strong and 
relatively simple, we don’t need sophisticated statistical tech-
niques to detect relationships between variables. Instead, we 
can reliably and easily detect strong relationships between 
variables using appropriate graphs of the relationships (ide-
ally including clearly labelled error indicators—e.g., error 
bars—on the graphs to show us the nature of the noise in the 
data). But scientific researchers often study relationships be-
tween variables that aren’t strong or that aren’t simple, and 
such relationships are hard to reliably detect with graphs. In 
these cases, the statistical methods for detecting relationships 
discussed above are useful. 

F.9. Some Theoretical Arguments About the Pre-
ferred Measure 

The preceding discussion covers eight sensible measures 
(including the p-value) of the weight of evidence in support 
of a research hypothesis—in support of the hypothesis that an 
effect discovered in scientific research is real in the underly-
ing population. The discussion concludes that the p-value is 
slightly superior to the other measures in the sense of being 
easier to understand, or more general, or less arbitrary. How-
ever, despite these advantages of the p-value, we can still ask 
whether one of the measures might in some sense be theoret-
ically more correct than the others. That is, does one of the 
measures gives us the “true” measure of the weight of evi-
dence in favor of the research hypothesis? This section eval-
uates six arguments why one of the measures might be theo-
retically superior to the others. 

First, it could be argued that the measure of weight of ev-
idence that is most nearly linearly related to a standard meas-
ure of the effect size in the region of the critical value is the 
true measure. But there are generally various available 
measures of the effect size in a given research situation, and 
these measures generally aren’t linearly related to each other 
as the effect size changes. Therefore, we would need to 
choose one of the measures of effect size and say that it is the 
“true” measure of effect size before we could use the linearity 

argument to choose the best measure of the weight of evi-
dence that an effect is real. But choosing one of the measures 
of effect size as the “true” measure seems somewhat arbitrary. 
So, if we are seeking objectivity, this first approach is ruled 
out. 

Consider a second argument for why one of the measures 
of the weight of evidence that an effect is real is superior to 
the others: It could be argued that one of the measures is more 
“natural” than the others. In fact, many statisticians have opin-
ions about which of the measures of the weight of evidence is 
most “natural”, although the opinions vary.  

The idea of appealing to the “naturalness” of the measure 
of the weight of evidence is sensible if we have a reliable 
measure of “naturalness”. Unfortunately, we don’t appear to 
have such a measure, so we must fall back on intuitions. But 
intuitions are unreliable. So it seems difficult to appeal to the 
concept of “naturalness” in choosing the best measure of the 
weight of evidence that an effect is real. 

Consider a third interesting argument for why one of the 
measures of the weight of evidence that an effect is real is 
superior to the others: Suppose that we choose any given 
measure of the weight of evidence that an effect is real (e.g., 
the Bayes factor), and suppose we choose a sensible critical 
value for the measure. Suppose that we then calibrate all of 
the other measures to have critical values that correspond to 
that value in a given research situation. That is, when our cho-
sen measure declares that an effect is statistically significant, 
then all of the other measures will also declare that the effect 
is statistically significant. (It is theoretically easy to do this 
calibration either analytically or through computer simula-
tions due to the monotonic relationships between the various 
measures.) Then suppose that we go to another research situ-
ation (e.g., the same research situation but with a different 
sample size). Then, if we use the same critical value, we will 
find that the various measures will in some borderline cases 
disagree with each other about whether there is sufficient ev-
idence to reject the null hypothesis. 

This phenomenon is illustrated in the case of the p-value 
and Bayesian approaches by Kass and Raftery (1995, sec. 
8.2), Wagenmakers (2007, pp. 792-794), and Held and Ott 
(2016). The Kass and Raftery example shows that for a given 
fixed weight of evidence under the Bayesian approach, we 
would under the standard p-value approach need to use a dif-
ferent critical p-value to reach the same conclusion, depend-
ing on the sample size. 

Figure 6 in Wagenmakers’ (2007) article shows the rela-
tionship between the sample size and the posterior probability 
that the null hypothesis is true. This figure shows that for a 
research result that just obtains statistical significance (i.e., 
the p-value is exactly equal to 0.05), the posterior “probabil-
ity” that the null hypothesis is true depends on the sample size. 

Held and Ott (2016) illustrate the phenomenon using min-
imum Bayes factors, which bypass the problem of correctly 
specifying the prior distribution because minimum Bayes fac-
tors are independent of the choice of the prior distribution. 
Held and Ott illustrate that the same p-value corresponds to a 
different minimum Bayes factors depending on the sample 
size.  
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The preceding three examples correctly show that there 
are inconsistencies between (a) the p-value and (b) either the 
Bayes factor or the posterior “probability” that the null hy-
pothesis is true. Thus if we assume that, say, the Bayes factor 
provides a “correct” measure of the weight of evidence, then 
corresponding critical p-values will vary with the sample size. 
Therefore, p-values are inconsistent with the “correct” meas-
ure, and thus the p-value is an “incorrect” measure of the 
weight of evidence. 

But, of course, we can readily reverse things. And if we 
assume that the p-value is the “correct” measure of weight of 
evidence, then the Bayesian methods of computing the weight 
of evidence are inconsistent with the p-value, and thus the 
Bayesian methods are “incorrect”. 

Thus there are inconsistencies between some of the 
measures of the weight of evidence pertaining to critical val-
ues if we move from one research situation to another (such 
as by changing the sample size). This is because the (mono-
tonic) relationships between the measures of weight of evi-
dence aren’t linear (as illustrated by Spiegelhalter et al, 2004, 
p. 132) and due to the Jeffreys-Lindley paradox (which is dis-
cussed in appendix L). Thus in a new research situation one 
measure may cross the critical-value boundary ahead of an-
other as the sample size (or some other relevant attribute of 
the research situation) changes.  

However, the existence of the inconsistencies doesn’t im-
ply that one of the methods is the true method and therefore 
the other methods are inferior (because they are slightly in-
consistent with the “true” method). Instead, it only demon-
strates that there are smooth inconsistencies in critical values 
between the measures if we change the sample size or if we 
change other aspects of the research situation. Arguably, these 
inconsistencies are trivial. (The differences would not be triv-
ial in cases when the differences are demonstrably substantial 
in a practical sense but, so far, it appears that no such cases 
have been proposed). Therefore, until demonstrated other-
wise, these minor inconsistencies are arguably ignorable. And 
these inconsistencies certainly don’t imply that one of the 
measures of the weight of evidence is the true measure, and 
the various other measures are therefore incorrect. 

Consider a fourth interesting argument for why one of the 
measures of the weight of evidence that an effect is real is 
preferred to the others: It is arguably sensible to say that the 
preferred measure of the weight of evidence is the measure 
that has the lowest false-positive and false-negative error 
rates. (False-positive and false-negative errors are explained 
in appendices B.11 and B.12). This is sensible because scien-
tists wish to make as few errors as possible in detecting rela-
tionships between variables. 

Appendix F.4 says that the Bayes factor is more powerful 
(i.e., they will make fewer false-negative errors for a given 
false-positive error rate) if we have informative prior distribu-
tions for the relevant parameters. (The posterior probability 
that the null hypothesis is true would also be theoretically 
more powerful in the presence of informative prior distribu-
tions if sensible critical values were defined for this probabil-
ity.) But (because we are often working at the leading edge of 
knowledge) we are only rarely in research situations in which 
we have informative prior distributions for the parameters. So 

in the following discussion we ignore the case of informative 
prior distributions. 

So (ignoring the case of informative prior distributions) 
does one of the measures of the weight of evidence tend to 
have lower rates of false-positive or false-negative errors than 
the others? Interestingly, it turns out that all of the measures 
can be calibrated to have exactly the same error rates. 

That is, in theory (and assuming we lack an informative 
prior distribution) we can choose critical values for each of 
the measures so that each measure declares that good evi-
dence of a relationship is present if and only if all of the other 
measures make the same declaration. If the measures are cal-
ibrated this way, then in a given set of research situations the 
various measures of weight of evidence will all make exactly 
the same false-positive and false-negative errors. So none of 
the measures of the weight of evidence would have a lower 
error rate than any of the others. 

It is noteworthy that if we do such calibration, we will find 
that the critical values for some (but not all) of the measures 
will depend on certain other aspects of the research situation. 
For example, the p-value automatically takes sensible account 
of the sample size, but some of the other measures (e.g., the t-
statistic and the D-value) don’t take full account of the sample 
size. So for the calibration to work perfectly in a given re-
search project, the critical values of these measures will be a 
function of the sample size in the research project. This makes 
the mathematics of the calibration somewhat complicated. 
But the complexity of the mathematics doesn’t negate the idea 
that in a given research situation if the measures are properly 
calibrated, then they will all make exactly the same declara-
tion about whether we can (in the absence of a reasonable al-
ternative explanation) sensibly reject the null hypothesis. 

Of course, the preceding ideas aren’t meant to imply that 
the various measures of the weight of evidence should be cal-
ibrated with each other. And we can define independent criti-
cal values for any of the measures at our sole discretion, pro-
vided only that the critical values are scientifically sensible. 
And if we do define such critical values, then we can readily 
calculate (sometimes analytically or always with a computer 
simulation) the rate of false-positive and false-negative errors 
we will make using these critical values in different research 
situations. 

The preceding ideas imply that (if we ignore the rare case 
of informative prior distributions) we can calibrate the 
measures of the weight of evidence to have critical values so 
that all of the measures will make the same false-positive and 
false-negative errors. Therefore, under such calibration, none 
of the measures is superior to the others in terms of its false-
positive or false-negative error rates. So (except in rare cases 
with an informative prior distribution) we can’t choose the 
“best” measure of the weight of evidence that an effect is real 
on the basis of lower false-positive and false-negative error 
rates. 

Of course, in real scientific research the measures of the 
weight of evidence generally aren’t calibrated with each other 
so, as noted, they will disagree with each other in some bor-
derline cases. If we are concerned about this, then in any re-
search situation we are free to compute several (or all) appli-
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cable sensible measures of the weight of evidence that an ef-
fect is real. Then we can compare the computed values against 
sensible critical values for each measure. This enables us to 
consider the results from various sensible points of view. This 
may also help us to decide which of the measures is most rea-
sonable, perhaps on the basis of ease of computation, or on 
the basis of the ease of understanding, or on some other sen-
sible basis. 

Typically, in a scientific research project we will find that 
the various measures (whether calibrated or not) will agree 
about whether we have enough evidence to reject the null hy-
pothesis. This is because all of the measures are sensible if 
they are used properly. For example, if we use both the t-sta-
tistic and the p-value to look for evidence of a relationship 
between variables, and if we use a critical value for the t-sta-
tistic of 2.0, and if we use a critical value for the p-value of 
0.05, then then the t-statistic and the p-value will almost al-
ways agree with each other about whether there is sufficient 
evidence to conclude that the studied effect is real. But if we 
encounter a situation in which some of the measures disagree, 
then this disagreement tells us that we are in a borderline sit-
uation, so our conclusions must be tentative until the results 
are properly replicated. 

Thus with the exception of rare cases when we have an 
informative prior distribution, we see that the various 
measures of the weight of evidence can be calibrated with 
each other to make exactly the same false-positive and false-
negative errors. This implies that none of the measures of the 
weight of evidence is superior to the others in the theoretical 
sense of making fewer errors. 

Consider a fifth interesting argument for why one of the 
measures of the weight of evidence that an effect is real is 
superior to the others: Some researchers say that the Bayes 
factor is preferred to the p-value because the conventional 
critical value for the Bayes factor is stricter than the conven-
tional critical values for the p-value (Ioannidis 2008; Wetzels 
et al 2011; Bayarri, Benjamin, Berger, and Sellke 2016). They 
recommend using the Bayes factor because the somewhat 
strict conventional critical value for Bayes factors make it less 
likely that the Bayesian approach will make false-positive er-
rors. (But, of course, the stricter critical value make it more 
likely that the Bayesian approach will make false-negative er-
rors.) Therefore, in view of the “replication crisis” in scien-
tific research, these researchers suggest that we should use the 
Bayes factor because (if we use it with a conventional critical 
value) it will lead us to make fewer false-positive errors. 

However, if a researcher or an editor wishes to reduce the 
rate of false-positive errors in research, then he or she needn’t 
switch to using Bayes factors. Instead, they can simply use a 
stricter critical value for the measure of weight of evidence 
that they are already using. For example, if a researcher or 
editor is using the p-value as a measure of the weight of evi-
dence, and if they are using a critical p-value of 0.01, and if 
they wish to use a stricter test, then they can switch to using a 
lower critical p-value, such as 0.005 or 0.001. (But, unfortu-
nately, this will necessarily increase the rate of false-negative 
errors or it will necessarily increase research costs, exactly as 
switching to the Bayes factor with conventional critical values 
would do.) 

The question of whether there is an optimal critical value 
for a test statistic is discussed further in appendix C. 

Consider a sixth interesting argument why one of the 
measures of the measures of the weight of evidence that an 
effect is real is superior to the others: Berger and Berry (1988) 
correctly note that the p-value is the fraction of the time that 
we will get a parameter estimate (or test statistic) that is as 
discrepant or more discrepant from the null value as the result 
that was actually obtained in the research if the null hypothe-
sis is or were true and if we repeat the research project over 
and over (and if the assumptions underlying the p-value are 
adequately satisfied). Berger and Berry focus on the idea of 
“more discrepant” and they suggest that we aren’t interested 
in parameter estimates (test statistics) that are more discrepant 
from the null value than the actual discrepancy of the param-
eter we have estimated in the research. And they suggest that 
we are only interested in the obtained estimated parameter 
value, and how discrepant it is from the null value. Therefore, 
they suggest that taking account of cases when the parameter 
estimate is more discrepant from the null value than the ob-
tained estimate is illogical, and therefore the p-value is illog-
ical. 

However, the p-value is a report of the estimated false-
positive error rate (under the obtained research results) when 
the null hypothesis is true (and provided that the conditions 
underlying the p-value are adequately satisfied). But if we re-
port the estimated false-positive error rate, then we are report-
ing the calculated rate of occurrence of parameter estimates 
as great as or greater than the value actually obtained (assum-
ing that the null hypothesis is true). Therefore, if we want to 
report to the false-positive error rate, we have to report the 
frequency of occurrence of parameter estimates that are 
greater than (or equal to) the value actually estimated. 

Arguably, it is important for researchers to be aware of the 
false-positive error rate for the statistical test of a given re-
search hypothesis. This is because false-positive errors in re-
search are expensive because if an obtained result is (theoret-
ically, socially, or commercially) important, and if the result 
is actually a false-positive error, then this leads to wasted re-
sources in trying to replicate or use the imaginary effect. So it 
is sensible to be attentive to false-positive errors. Therefore, 
it is sensible to have the measure of the weight of evidence 
directly report the theoretical rate at which false-positive er-
rors will occur under the obtained research results if the null 
hypothesis is true. Therefore, the p-value is sensible. 

F.10. Which Measure of the Weight of Evidence Is 
Best? 

The preceding subsection considered some theoretical ar-
guments why one of the eight measures of the weight of evi-
dence that an effect observed in scientific research is real 
might be best. We saw that most of these arguments are in-
conclusive about whether one of the measures is best. But the 
p-value has the advantage that (through the critical p-value) it 
reports the false-positive error rate, which is useful because 
false-positive errors can lead to an expensive waste of re-
sources and therefore they must be identified and eliminated.  
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In addition, the details in subsections F.1 through F.7 sug-
gest that the p-value is slightly superior to the seven other ap-
proaches in the sense of sometimes being easier to understand 
(in terms of the count and complexity of the required con-
cepts), or sometimes somewhat more general, or sometimes 
somewhat less arbitrary. (As noted in subsection F.4, the 
Bayesian approach is more powerful than the p-value ap-
proach if we have a reliable informative prior distribution, but 
that occurs only rarely.) 

In view of the preceding points, the p-value is a sensible 
and arguably slightly superior universal criterion for deter-
mining whether (in the absence of a reasonable alternative ex-
planation) we have good evidence that an effect observed in a 
scientific research project is real in the population of entities 
under study.  

Appendix G: The Relationships Between the 
Measures of the Weight of Evidence that an Effect 
Is Real 

Appendix F discusses eight different measures (including 
the p-value) of the weight of evidence that a real effect (usu-
ally a relationship between variables) exists in the entities in 
the population of entities under study. In general, these 
measures can all be computed from properly collected scien-
tific research data. Appendix F also says that in a given re-
search situation the various measures of the weight of evi-
dence that a particular effect is real are monotonically related 
to each other. The present appendix supports this point and 
shows graphically how some of the measures are computed. 

Suppose that we have performed an appropriate research 
project to study the relationship between a set of predictor 
variables 𝑥 and a response variable 𝑦. And suppose we have 
collected the values of 𝑥 and 𝑦 in a data table. And suppose 
we wish to study the relationship between 𝑥 and 𝑦 with linear 
regression analysis. Finally, suppose that we wish to deter-
mine whether we have good evidence that the predictor vari-
able(s) associated with the ith term in the model equation is 
(are) related to the response variable. We can make this deter-
mination by studying the estimated “sampling distribution” of 
the estimated parameter for the term. Using the notation for 
equation (2) in appendix B.3, we refer to this parameter as 𝑏𝑖. 

We begin by computing the estimated value of 𝑏𝑖. We also 
compute the estimated standard error of the sampling distri-
bution of 𝑏𝑖. Straightforward methods have been derived to 
estimate both of these values from properly collected research 
data in standard research situations. These two values, along 
with the sample size, the relevant prior information (which is 
only required for Bayesian approaches), and theoretical con-
siderations enable us to compute the values of the measures 
of the weight of evidence. (Some measures of the weight of 
evidence don’t apply in some situations, although all of the 
measures apply in the standard regression situation.) 

After we have obtained the estimated value of 𝑏𝑖 and its 
estimated standard error, we can have the computer draw a 
graph of the sampling distribution of the parameter under the 
assumption that the null hypothesis is true. This graph illus-
trates several of the measures of the weight of evidence that 
the effect under study is real. Figure G.1 illustrates how this 

distribution might appear for parameter 𝑏𝑖 in our research, as 
computed from our data table.  

 

Figure G.1. A graph showing the estimated sampling 
distribution (estimated probability density function) of 
a parameter 𝑏𝑖 of a linear regression model equation 
assuming that the relevant null hypothesis is true. The 
computer code to generate this graph is available in the 
supplementary material of this paper. 

In computing of the estimate of parameter 𝑏𝑖 and the esti-
mate of the standard error of the estimate we must decide 
which other terms to include in the model equation because 
the estimate of 𝑏𝑖 and the estimate of its standard error depend 
on which other terms are included. This is a complicated mat-
ter which is dealt with various approaches to “variable selec-
tion” in the study of relationships between variables. We ig-
nore the matter here to focus on the single parameter 𝑏𝑖. How-
ever, we must properly deal with this matter in real research. 

The horizontal axis of the graph represents a section of the 
theoretically possible range of values of 𝑏𝑖—the section of the 
range in which the parameter likely has its true value. The 
curving blue line shows the estimated sampling distribution 
function of the parameter under the assumption that the null 
hypothesis is true. This assumption implies that the estimated 
sampling distribution is centered on the null value, zero, as 
shown on the graph. The shape of the distribution curve on 
the graph is mathematically (rigorously) derived from the 
standard assumptions underlying linear regression analysis, 
as discussed, for example, by Chatterjee and Hadi (2012).  

The curving blue line shows the estimated relative rate of 
occurrence of different estimated values of the parameter we 
would obtain if the null hypothesis is or were actually true in 
the population and if we were to perform the research project 
over and over, each time using a fresh random sample of en-
tities from the population (and assuming the relevant under-
lying assumptions are adequately satisfied). Of course, in a 
real research project we experience only a single instance of 
the multiple instances of the research project that are depicted 
on the graph.  

The curving blue line is drawn so that the area under the 
curve between any two points on the horizontal axis is exactly 
equal to the estimated probability that the value of the param-
eter estimated from research data will lie between the two 
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points if the null hypothesis is true. This implies that the total 
area under the curve (if we go out to “infinity” in both direc-
tions) is exactly equal to 1.00 if we use the correct behind-the-
scenes height and width units of the graph to measure the area. 

The blue line descends from its maximum point evenly on 
both sides of the null value. This tells us that (assuming that 
the null hypothesis is true) the estimated values of the param-
eter might fall on either side of the null value, and values that 
are close to the null value are more likely to be estimated as 
the value of the parameter in the research project than values 
that are farther away from the null value.  

Of course, if the null hypothesis is false, then the distribu-
tion won’t be centered on the null value, but will be centered 
on the true (non-zero) value of the parameter in the popula-
tion. And, of course, we would like the null hypothesis to be 
false because in standard scientific research that is what we 
are hoping to discover. 

The curving blue line was drawn by a computer after it 
was told (a) the null value (zero in this case), (b) the estimated 
standard error of the parameter estimate (which defines the 
“width” of the curve), (c) the type of distribution the (stand-
ardized) parameter has (in this case, a central t-distribution, as 
dictated by statistical theory in regression analysis under the 
standard assumptions) and (d) the “degrees of freedom” of the 
t-distribution. 

No numeric values are shown on the horizontal axis of the 
figure because the numbers are less relevant. It is the shape of 
the curve and the location of the parameter estimate relative 
to the curve that are important. (We consider the location of 
the parameter estimate in a moment.) 

As noted, the curving line on the graph shows the sam-
pling distribution function of a t-distribution (under the as-
sumption that the null hypothesis is true). The computer drew 
this graph under the assumption that the relevant t-distribution 
has 30 degrees of freedom—the degrees of freedom are di-
rectly related to the sample size—the larger the sample, the 
greater the degrees of freedom. (In standard situations, the de-
grees of freedom is usually between 1 and 10 or so less than 
the number of values of the response variable in the data, i.e., 
between 1 and 10 or so less than the sample size.) Of course, 
the t-distribution becomes indistinguishable from a normal 
distribution if the degrees of freedom is large enough (i.e., 
greater than 40 or so depending on how fussy we are about 
“indistinguishable”).  

The spread (standard error) of the distribution in the figure 
is the spread that was estimated from the analysis of the re-
search data. The curve on the figure is completely defined by 
the combination of (a) the identity of the null value (zero), (b) 
the estimated standard error of the parameter estimate, and (c) 
the assumption of the t-distribution (with appropriate degrees 
of freedom). 

As noted, the computer used the estimated standard error 
of the parameter estimate to draw the figure. The value of the 
estimated standard error is shown on the figure as 𝑠, shown 
by the two horizontal lines partway up the curve, each indi-
cating the value of 𝑠, illustrating how the estimated standard 
error is a measure of the “width” of the curve. 

For a t-distribution, the value of 𝑠 is roughly (but not ex-
actly) equal to the horizontal distance from the center of the 

distribution to either of the two “points of inflection” on the 
curve. The two points of inflection are the points where the 
curve changes from curving down to curving up or vice versa. 

As noted, in this example we assume that we have per-
formed the research project a single time. Let us assume that 
the value of the parameter that we half estimated from the data 
is the value 𝑏̂𝑖, which is shown near the right end of the hori-
zontal axis of the figure. The “hat” on the 𝑏𝑖 is a standard no-
tation to indicate that the value is the actual value that we have 
estimated from the data, as opposed to the theoretical esti-
mated value. Similarly, the negative of 𝑏̂𝑖 is shown near the 
left end of the horizontal axis. In other research projects the 
estimated value 𝑏̂𝑖 will lie at other places on the horizontal 
axis relative to the blue curve, nearer to or farther away from 
the null value. But, if the underlying assumptions are ade-
quately satisfied, the principles in the following discussion al-
ways apply. 

As noted above in appendix F.1, Student’s t-statistic is the 
distance of the parameter from the null value in units of the 
standard error of the parameter. So if you use a ruler to meas-
ure the distance of 𝑏̂𝑖 from the null value of zero on the figure 
(e.g., measuring the distance in centimeters or inches), and if 
you measure the length of 𝑠 (using the same units), then you 
can compute the t-statistic as 𝑏̂𝑖/𝑠. And if you actually meas-
ure these values on the figure with a ruler, you will see that 
the value of 𝑏̂𝑖/𝑠 in this case is approximately 2.16. In other 
words, the estimated value of 𝑏̂𝑖 is 2.16 standard errors away 
from zero. 

Thus the estimated value of 𝑏̂𝑖 together with the estimated 
standard error 𝑠 of the sampling distribution causes the t-sta-
tistic to be a little greater than 2.0, which is a standard critical 
value for the t-statistic, as discussed in appendix F.1. There-
fore, (if the figure were based on real data and in the absence 
of a reasonable alternative explanation) 𝑏𝑖 is far enough away 
from the null value that we have reasonable evidence of the 
existence of a relationship between the predictor variable(s) 
associated with parameter 𝑏𝑖 and the response variable. 

If this were a real research project, we might stop studying 
the 𝑏𝑖 parameter at this point, happy that the t-value of 2.16 is 
greater than 2.0, which implies that we have found reasonable 
evidence of a relationship between the variable(s) associated 
with the ith term in the equation and the response variable. 
However, let us study figure G.1 further to see how it illus-
trates the various measures of the weight of evidence of the 
relationship between the variables. 

Sometimes graphs like figure G.1 are shown with the hor-
izontal axis specified in units of the estimated standard error 
of parameter 𝑏𝑖 as opposed to the raw units of 𝑏𝑖. We use this 
approach because the standard-error units directly represent 
the values of the t-statistic, which are in effect always the 
same units and are therefore easier to interpret than the actual 
units of the parameter, which vary from application to appli-
cation. It is easy to see that if we were to show standard-error 
units on the horizontal axis of figure G.1, then the 𝑏̂𝑖 near the 
right end of the axis falls at the value (discussed above) of 
2.16 on the axis. (If the horizontal axis represents the values 
of the t-statistic, then the numbers on the vertical axis are no 
longer relative values but are the actual values of the height 
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of the curve—the values that cause the area under the curve 
to be exactly 1.0.) 

Figure G.1 enables us to determine the p-value that is as-
sociated with 𝑏̂𝑖. The p-value is simply the sum of the areas 
of the two “tail” sections of the distribution, where the tail is 
the area under the curve where the value of the parameter is 
less than −𝑏̂𝑖 or greater than 𝑏̂𝑖. For some readers it may be 
intuitive, and it is easy to show theoretically, that that sum of 
the two tail areas (i.e., a1 + a2) is the theoretical probability 
(fraction of the time) that the obtained estimated absolute pa-
rameter value will be as great as or greater than the value 𝑏̂𝑖 
obtained in the current research if the null hypothesis is or 
were actually true in the population.  

(Of course, the p-value will be valid only if the underlying 
assumptions of the p-value are adequately satisfied, and only 
if there is no reasonable alternative explanation for the low p-
value. And, of course, the other measures of the weight of ev-
idence have similar assumptions that must be satisfied for the 
use of the measures to be valid.)  

In the example in the figure, the actual sum of the two tail 
areas (if we properly assume that the graph goes to “infinity” 
in both directions) is approximately 0.039, as determined by 
a computer using the relevant formula. Thus the p-value for 
𝑏̂𝑖 in this example is 0.039. The fact that the p-value is less 
than 0.05 implies that if this were a real research result, then 
(in the absence of a reasonable alternative explanation) we 
could (tentatively) reject the null hypothesis and conclude that 
we have reasonable evidence of the existence of a relationship 
between the predictor variable(s) associated with parameter 
𝑏𝑖 and the response variable. Of course, this is (due to the di-
rect linkage between the t-statistic and the p-value) the same 
conclusion that we drew four paragraphs above from the t-
statistic. 

Some readers may wonder why we compute the p-value 
using both tails of the parameter distribution under the null 
hypothesis. Why not use just one of the tails—i.e., the tail on 
the side that the actual measured value of the parameter lies? 
We use both tails because if the null hypothesis is or were 
true, then it is generally equally possible that the value of the 
parameter could fall on either the low side or the high side of 
the null value. Thus in computing the fraction of the time that 
the parameter estimate will be greater than or equal to the ob-
tained value (under the null hypothesis), it is sensible to take 
account of both sides of the null value—sensible to include 
the area of both tails. 

Some researchers are tempted to take account of only one 
of the tails because this has the effect of cutting the p-value  
for this particular parameter value in half, and researchers are 
almost always eager to obtain lower p-values. However, in 
general, this approach isn’t permissible because, as noted, if 
the null hypothesis is true, then the estimated value of the pa-
rameter might lie on either side of the null value. 

In figure G.1 the 95% confidence interval is the interval 
centered on the null value that is labelled “95% confidence 
interval”. Recall that the area under the curve is 1.0 square 
unit. If we measure the area under the curve inside the lower 
and upper limits of the 95% confidence interval using the be-
hind-the-scenes units of the horizontal and vertical axes, then 

we will find that the area is exactly 0.95 square units, as the 
name is intended to imply.  

Assuming that the actual value of the parameter estimated 
in the research is the value 𝑏̂𝑖 on the horizontal axis, we see 
that in the present example the 95% confidence interval 
doesn’t overlap the estimated parameter value of 𝑏̂𝑖. Thus, as 
discussed above in appendix F.2, we can (in the absence of a 
reasonable alternative explanation) reject the null hypothesis 
and conclude that we have reasonable evidence of a relation-
ship between the predictor variable(s) associated with param-
eter 𝑏̂𝑖 and of the response variable. Of course, this is the same 
conclusion that we obtained immediately above using the t-
statistic and using the p-value. 

In figure G.1 the likelihood ratio is the ratio of the heights 
of the density function at the estimated value of the parameter 
to the height at the null value, i.e., hp / hq. The value hp is the 
height of the likelihood function at the value of the parameter 
if the null hypothesis is true and if the estimated value of the 
parameter is 𝑏̂𝑖. In contrast, if the specific hypothesis that 𝑏𝑖 =

𝑏̂𝑖 is true, then it would be correct to superimpose the peak of 
the distribution function at 𝑏̂𝑖 on the horizontal axis. Then the 
height of the likelihood function at 𝑏̂𝑖 on the axis would be hq.  

(Technically, if the research hypothesis is true and the cor-
rect value of the parameter in the population is 𝑏̂𝑖, then the 
distribution of the parameter will no longer be a central t-dis-
tribution, but will be noncentral t-distribution. In this case, the 
height of the distribution at the value 𝑏̂𝑖 will generally be a 
slightly different height from hq, which adds another layer of 
complexity, which we ignore in the present conceptual dis-
cussion. Of course, in mathematical treatments we generally 
take this complexity into account for the sake of mathematical 
consistency.) 

If you measure hp and hq on the graph and then compute 
the ratio of the two heights, you will see that the likelihood 
ratio is approximately 0.106 (but note the preceding para-
graph). It is also easy to see that if the estimated value of 𝑏̂𝑖 
increases (i.e., if 𝑏̂𝑖 moves to the right along the axis), then the 
value of the likelihood ratio will decrease because hp will de-
crease while hq remains constant (but note the preceding par-
agraph). 

In the case of the Bayes factor, the sampling distribution 
shown in figure G.1 should be viewed as the estimated mar-
ginal posterior distribution of the parameter under the null hy-
pothesis, as derived from Bayesian principles. This distribu-
tion may be a t-distribution, but it may also be some other type 
of distribution. But regardless of the type of distribution, in 
standard situations the distribution will often be (at least 
roughly) bell-shaped and symmetrical about the null value if 
the null hypothesis is true. 

In the case of the Bayes factor, things are somewhat more 
complicated than the likelihood ratio case. This is because the 
placement of the center of the distribution under the research 
hypothesis generally isn’t on the estimated value of the pa-
rameter. These ideas are illustrated in figure G.2  
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Figure G.2. A redrawn version of figure 2 from an ar-
ticle by Bayarri, Benjamin, Berger, and Sellke (2016, 
hereafter BBBS) showing their graphical interpreta-
tion of the Bayes factor. The BBBS notation has been 
changed to reflect the notation of the present paper. As 
noted in the caption of the BBBS figure, the value of 
the Bayes factor is h1 / h0. The computer code to gen-
erate this graph is available in the supplementary ma-
terial of the present paper. (Permission to reproduce 
the BBBS figure is granted in the article.) 

The figure helps us to see the complexity of the Bayesian 
approach because BBBS have drawn the figure with the max-
imum value of the H1 distribution offset from the observed 
value 𝑏̂𝑖 of the parameter. This is because the H1 distribution 
is a specific distribution that is specified by the researcher, as 
noted by BBBS in their discussion about the “point alterna-
tive” hypothesis they are using (p. 93). This distribution (re-
flecting a very specific research hypothesis) is at the re-
searcher’s complete discretion, The fact that the location and 
width of the H1 distribution are at the researcher’s discretion 
adds an air of arbitrariness to the procedure. 

We could simplify things and remove some arbitrariness 
by specifying that the H1 (blue) distribution should be cen-
tered on the vertical line at 𝑏̂𝑖 on the horizontal axis, as it is in 
the case of the likelihood ratio. And we can specify that the 
width of the distribution should be the width as estimated 
from the data. Then the Bayes factor would be equivalent to 
hq / hp on the earlier figure G.1 (but based on the estimated 
Bayesian posterior parameter distributions, and not on the es-
timated frequentist parameter distributions). 

Figure G.2 suggests (somewhat obscurely) the relation-
ship between the Bayes factor and the effect size. That is, if 
we fix the red and blue curves on the graph, and if we then let 
𝑏̂𝑖 (which is a measure of the effect size) increase or decrease, 
then we will see that h1 / h0 (i.e., the Bayes factor) will (at 
least in certain typical cases) consistently increase or decrease 
in step. That is, the relationship between the Bayes factor and 
the effect size is monotonic. This phenomenon is illustrated 
in the output from the computer program that generates figure 
G.2. 

It is typically the case that the Bayesian posterior distribu-
tion is wider than the associated frequentist parameter distri-
bution, with the relative widths depending on the prior prob-
ability distribution of the parameter. If the Bayesian distribu-
tion is wider than the frequentist distribution, this causes the 
estimated value of the parameter (i.e., 𝑏̂𝑖 in the example) to be 
(relative to the distribution curve) closer to the null value, 
which implies that the standard Bayes factor is generally 
smaller than the reciprocal of the associated likelihood ratio. 
The fact that the Bayesian posterior distribution is typically 
wider than the frequentist distribution is arguably neither 
good nor bad, but should be noted for proper understanding. 

The discussion of figures G.1 and G.2 enables us to see 
how some of the measures of the weight of evidence are mon-
otonically related to each other. That is, with other things be-
ing constant, if the value of 𝑏̂𝑖 (a raw measure of the effect 
size) increases, then the t-statistic will increase, the p-value 
will decrease, the parameter estimate will be further outside 
(or closer to being outside) the 95% confidence interval, the 
likelihood ratio will decrease, and the Bayes factor will in-
crease. Thus all of the referenced measures are in monotonic 
relationships with the effect size. This implies, in turn, that all 
these measures of the weight of evidence are in monotonic 
relationships with each other (due to the transitivity of mono-
tonicity). Of course, in the Bayesian case we are using a dif-
ferent graph, but the frequentist and Bayesian graphs are 
linked by the fact that they are both showing the same effect 
size on the horizontal axis. (The concepts pertaining to the 
confidence interval are slightly different, but the conclusion 
is the same.) 

In the case of the posterior probability that the null hy-
pothesis is true, we can’t picture this probability on one of the 
figures. However, as noted by Berger and Sellke [1987, equa-
tions (2.2 and (2.4)], the posterior probability that the null hy-
pothesis is true is a simple function of the Bayes factor. And 
if we differentiate the function that expresses the relationship 
between the posterior probability that the null hypothesis is 
true and the Bayes factor, we see that the derivative is always 
negative (or, if we are using the inverse of the standard Bayes 
factor, always positive) when the prior probability is the per-
missible range, which implies that there is a monotonic rela-
tionship between the Bayes factor and the posterior probabil-
ity that the null hypothesis is true. This implies, in turn, that 
the posterior probability that the null hypothesis is true is in a 
monotonic relationship with all of the other measures of the 
weight of evidence. 

The D-value is closely related to the p-value derived from 
figure G.1 because the D-value uses the same formula as the 
p-value, except that the sample size in the formula is replaced 
by the numeral 1, as discussed by Demidenko (2016, sec. 5). 
Thus, as with the p-value, the D-value is a function of the t-
statistic. Thus as 𝑏̂𝑖 increases, the tail area of the distribution 
function for the D-value will decrease, and thus the D-value 
itself will decrease. Therefore, the D-value is monotonically 
related to the t-statistic, and therefore the D-value is (due to 
transitivity of monotonicity) also monotonically related to the 
other measures of the weight of evidence. (But, as noted in 
appendix F.6, the D-value is better viewed as a measure of 
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strength than as a measure of the weight of evidence because 
it doesn’t take proper account of the sample size.) 

A similar argument applies to the information criteria—as 
the discrepancy of the parameter estimate from the null value 
increases (with other factors held constant), the expected 
value of the relevant information criterion will decrease in 
value, which implies that (if the decrease is great enough) the 
relevant term will be selected for inclusion in the model equa-
tion by the algorithm used by the information theory approach 
to select terms for inclusion in the model equation. Of course, 
selection of a term for inclusion in the model equation implies 
that the algorithm has decided that there is enough evidence 
to (tentatively) conclude that a relationship exists between the 
predictor variable(s) associated with the parameter and the re-
sponse variable. 

(For completeness, it is noteworthy that this paper hasn’t 
proven that the measures of the weight of evidence are always 
in monotonic relationships with the effect size. And, in fact, 
pathological cases exist when non-monotonic relationships 
occur, such as a Bayes factor based on two central t-distribu-
tions, one offset from the other. In this case, if the t-statistic 
becomes large enough, then the Bayes factor is no longer in a 
monotonic relationship with the t-statistic, as illustrated in the 
output from the program used to generate figure G.2. Any 
measure of the weight of evidence that an effect is real that 
isn’t in a monotonic relationship with the effect size won’t be 
in a monotonic relationship with the other measures of the 
weight of evidence. It seems less likely but possible that this 
non-monotonicity could also occur in some non-pathological 
cases.) 

The preceding discussion implies that all of the measures 
of the weight of evidence are (at least in the standard cases) 
in monotonic relationships with each other if the effect size 
increases or decreases under standard assumptions and with 
other things being equal. Therefore, the various measures of 
the weight of evidence are in a sense equivalent to each other. 
They are equivalent in the sense that (with some less im-
portant exceptions) they could be calibrated with one another 
to make the same declarations about whether (in the absence 
of a reasonable alternative explanation) we have enough evi-
dence to conclude that an effect is real. And the main differ-
ence between the measures in a practical sense is merely that 
they operate using different scales. 

It is straightforward to generalize the preceding discussion 
beyond linear regression analysis, although that is beyond the 
present scope. It seems likely that the monotonic relationships 
between the measures of the weight of evidence will be pre-
sent in many or most cases.  

Appendix H: Should We Allow the True Values of 
Parameters of Model Equations to Vary? 

As noted in appendix B.4, we usually view the true values 
of parameters of model equations as being fixed values in the 
population (although the estimates of the values generally 
vary from one research project to the next). The idea that pa-
rameters have fixed values is especially evident in the physi-
cal sciences, as discussed below in appendix I. However, it is 
also possible and sometimes sensible to view the true values 

of parameters or effects of a model equation as themselves 
varying “slowly” over time. But in that case we generally 
view the parameters as being fixed within the frame of refer-
ence under study. 

In contrast, some statisticians suggest that we should al-
low the true values of the parameters of a model equation to 
vary instead of assuming that they have constant fixed values. 
For example, Gelman recommends that we move “beyond the 
worldview in which effects are constant …” (2015, p. 633). 
Although Gelman uses the word “effects”, it appears that he 
means what the present paper refers to as “parameters”. This 
suggests that a modern approach to data analysis would allow 
the true values of the parameters of a model equation of a re-
lationship between variables to vary from one research project 
to the next. 

Although the approach with varying true parameter values 
is more complicated, the idea seems sensible in a given situa-
tion if we can show that the approach is useful. For example, 
if we can show that if we allow parameter values to vary, then 
this enables model equations to make better predictions than 
if we use fixed parameter values, then clearly the approach 
would be sensible. 

However, if we allow the true values of the parameters of 
a model equation to vary, then we can model the variation in 
the values of a parameter with a second-level model equation. 
That is, any parameter with varying values can be the re-
sponse variable in a second-level model equation. And what-
ever causes or is related to the variation in this new response 
variable can be the predictor variable(s) in the second-level 
equation. And this second-level equation will itself almost 
certainly have parameters with fixed true values. (If the sec-
ond-level model equation also has parameters with varying 
values, then we can use a third-level model equation with 
fixed parameters to model the variation in the values of the 
parameters of the second-level equation, and so on. And, pre-
sumably, though not necessarily, we would encounter fixed 
parameter values at some point in the sequence of model 
equations.) 

However, if we have a second-level model equation that 
models the variation in the values of a parameter, then we can 
substitute the right-hand side of the second-level (or the right-
hand side of a yet higher-level) model equation into the orig-
inal model equation in place of the associated parameter. (In 
this substitution operation we omit the error term associated 
with the second-level equation, leaving the prediction errors 
in the first-level model equation to be modelled by the error 
term in that equation.) This will generate a new version of the 
original equation, except that all the parameters in the new 
equation associated with the term with the varying parameter 
will now have fixed true values. Thus although having param-
eter values that vary is theoretically permissible, we can (at 
least in theory) often convert varying parameters to fixed pa-
rameters by replacing them with a more complicated set of 
terms (with fixed parameter values). Thus arguably we don’t 
need to develop statistical procedures to directly handle vary-
ing parameter values (unless it can be convincingly shown 
that the approach with varying parameter values is somehow 
more efficient than trying to model the varying parameter val-
ues). 
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Of course, the approach described in the preceding para-
graphs won’t work if the variation in the values of a varying 
parameter is “truly” random variation that depends on no 
other variables. This is because if a parameter is truly random, 
then there will be no model equation that can account for the 
varying values. However, in this case, it is arguably sensible 
to conceptually move the variation out of the parameter and 
into the error term of the original model equation, and to let 
the parameter value itself be the mean (or some other sensible 
measure of central tendency) of the varying distribution. This 
is sensible because it collects all the random variation together 
in the error term, which makes things simpler when we wish 
to use the model equation to predict or control the values of 
the response variable. Of course, if we can somehow demon-
strate that some of the variation somehow rightfully belongs 
in the parameter itself as opposed to belonging in the error 
term, then this variation is arguably best left in the parameter. 

Thus it seems sensible to view the true values of the pa-
rameters of a model equation as being fixed numbers, with the 
provision that a parameter may have varying values if a sig-
nificant advantage of that can be clearly demonstrated. 

Appendix I: A Case When We Know the Exact Val-
ues of Parameters  

As noted, researchers usually view the values of the pa-
rameters of a model equation as being fixed numeric values in 
the population that are constant from one instance of a re-
search project to the next. But if we perform scientific re-
search, we are only able to obtain estimates of the true values, 
and the estimates will vary somewhat from one instance of a 
research project to the next. 

The view that the true parameter values are fixed in the 
population (i.e., in nature) is highly evident in the physical 
sciences where researchers study the fundamental physical 
constants, such as the gravitational constant, the molar gas 
constant, and the Planck constant (Mohr, Newell, and Taylor 
2016). These constants can all be readily viewed as parame-
ters of model equations of relationships between variables. 
Physical scientists view these constants as being fixed (unvar-
ying) over time, as implied by the name “constants”. Physical 
scientists have performed various careful research projects to 
estimate the correct values of these parameters. 

However, in an interesting reversal, at the most basic level 
of the physical sciences, the true values of certain parameters 
aren’t estimated from data, but are instead specified by hu-
man fiat. Then various concepts are defined in terms of these 
specified-by-fiat values (Mohr, Newell, and Taylor, 2016, 
sec. II). 

For example, in Einstein’s model equation, 𝐸 = 𝑚𝑐2, the 
𝐸 is the amount of energy in a piece of matter and the 𝑚 is the 
mass of the piece of matter. We can use this equation to de-
termine the amount of energy in a piece of matter if we know 
its mass. And we can likewise use the equation to determine 
the mass of a piece of matter if we know its energy. 

The 𝑐2 in Einstein’s equation is the parameter of the equa-
tion which, astonishingly, Einstein has shown is equal to the 
square of the speed of light in a vacuum. 

The speed of light in a vacuum, 𝑐, is a special type of pa-
rameter because (since 1983) its value has been specified by 
human fiat (on the basis of earlier estimates and on the basis 
of almost universal agreement among physical scientists). 
The value is specified to be exactly 299,792,458 meters per 
second (BIPM, 2006). Physical scientists specify the speed of 
light in a vacuum by fiat because this effectively and exactly 
defines the standard unit of length, the meter. That is, the me-
ter is defined to be exactly 1/299,792,458 of the distance that 
light will travel in a vacuum in one second. So, instead of de-
fining the unit of length and then determining the speed of 
light in terms of that unit, physical scientists specify the speed 
of light, and then they define the unit of length in terms of that 
speed. 

The definition of the meter refers to the measurement of 
time, specifically the measurement of one second of time. 
Thus the definition of the meter requires that we have a good 
definition of the unit of time, the second, which is now also 
exactly specified (BIPM, 2006). 

Physical scientists chose to define the unit of length in 
terms of the speed of light because they believe it is sensible 
to view the speed of light in a vacuum as being constant in 
nature (i.e., constant in all instances in the population of cases 
when light travels in a vacuum), and thus this constant value 
is a reasonable foundation for other physical constants—con-
stants that must be estimated from data. Also, this constant 
value is in theory relatively easy to reproduce anywhere in the 
universe, which satisfies our preference for generality. Some 
other parameter values that are now or will likely soon be 
specified exactly are the Planck constant, the Boltzmann con-
stant, and the Avogadro constant. 

We can see the difference between the estimated parame-
ter values in the physical sciences and the parameter values 
specified by fiat by noting that all estimated parameter values 
have (perhaps behind the scenes) an associated estimate of 
their precision or uncertainty. For example, the key article 
specifying the currently accepted values of the more than 300 
fundamental physical constants reflects the fact that almost all 
of the constants have been estimated from appropriate re-
search data, and thus each of these constants has an associated 
uncertainty, which is shown in the “Relative standard uncer-
tainty” column in most of the tables in the article (Mohr, New-
ell, and Taylor, 2016). But a few of the fundamental constants 
have exact fixed values, such as the speed of light in a vacuum 
and the molar mass of carbon 12. These constants have no 
associated estimate of their uncertainty, as illustrated in table 
I in the Mohr, Newell, and Taylor article. 

Physical scientists specify the values of a small number of 
basic parameters and measurement units by fiat because they 
have decided that this is the most efficient way to develop 
variables and measurement of variables in the physical sci-
ences. Physical scientists have chosen the particular set of pa-
rameters and measurement units to be specified by fiat be-
cause these parameters and measurement units are perceived 
as an easy-to-understand, relatively easy-to-use, and (hope-
fully) an unshakable foundation on which measurements in 
the physical sciences can rest. That is, these specified-by-fiat 
parameter values and measurement units are the basis for de-
veloping the measurement system for physical phenomena 
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which, in turn, serves as a basis for deriving relationships be-
tween variables pertaining to physical phenomena, and for de-
riving estimates of the values of the other parameters (physi-
cal constants) of the associated model equations for relation-
ships between variables in entities of the various types of en-
tities that are studied in the physical sciences. 

The method of specifying certain parameter values and 
measurement units in physical science by fiat is closely akin 
to specifying a small set of axioms in a logical or mathemati-
cal system and then developing a set of propositions from the 
axioms. The method is also closely akin to specifying a “basis 
set” of vectors for a subspace of a vector space in linear alge-
bra. Multiple basis sets are possible for a given vector sub-
space, just as it would be possible to choose different sets of 
parameters to be the basis of physical science. 

Gauss appears to have been the first physical scientist to 
specify a parameter value by fiat. As discussed by Roche 
(1998), Gauss was the first scientist to put Newton’s second 
law of motion in modern form as F = ma. Gauss in effect 
specified that the parameter of this equation is the numeral 
one (1.0), thereby implicitly specifying a definition of the 
units of force. It is noteworthy that by specifying that the 
value of the parameter of the model equation for Newton’s 
second law is the numeral one, Gauss wasn’t defining the con-
cept of force, and he was merely defining the units of force.  

Curiously, Gauss’ decision to set the parameter of New-
ton’s second law to the numeral one has ever since confused 
many legions of physics students who (despite conventional 
explanations) are still puzzled why the law appears to have no 
parameter, because they know intuitively that usually things 
don’t come out as perfectly as the model equation suggests, 
and there is always a parameter to make the units conform. Of 
course, the parameter is present in Gauss’ expression of New-
ton’s second law, but the value of the parameter is 1.0, so the 
parameter is invisible. 

Appendix J: Approaches to Publishing Negative 
Results 

As noted in appendix B.10, most scientific journals won’t 
accept reports of research results when the main result is a 
negative result. However, some researchers sensibly believe 
that negative results should be published because these results 
tell us what has been tried in research but has failed. Thus 
because most scientific journals won’t publish negative re-
sults, some researchers have established journals or registries 
that enable reporting of negative results. These journals and 
registries can be found by searching the Internet for “negative 
results” or “research registry”. 

The following are arguments in favor of publishing nega-
tive results:  
• The publication of negative results helps researchers to 

avoid repeating research that has failed, thereby conserving 
resources.  

• The publication of negative results allows researchers to 
report innovative methods that might be useful in other re-
search.  

• The publication of negative results provides useful caution-
ary information.  

• The requirement that all research be registered before it is 
begun, including a statement of the research hypothesis and 
the research protocol makes it more difficult for research-
ers to publish serendipitous findings that may have arisen 
through chance or through data dredging. 
The following are arguments against publishing negative 

results.  
• In general, negative results are less interesting than positive 

results.  
• If a new research procedure is truly innovative, then it is 

generally best not to discuss it in a paper reporting a nega-
tive result, but to use it in further research and to publish a 
description of the innovative research procedure in the re-
port of that research.  

• There are many possible reasons to explain why a research 
project obtained a negative result, including the possibility 
of carelessness on the researcher’s part and the possibility 
of a simple false-negative error. Thus a negative result 
doesn’t necessarily mean that the relationship between var-
iables under study definitely doesn’t exist (although some 
readers may mistakenly interpret it that way).  

• It is highly unlikely that any researcher would ever exactly 
repeat an unknown failed research project, and the slight 
differences between the “repeating” research project and 
the original research project might lead the second re-
searcher to obtain a positive result. 
If a researcher obtains a negative result, and if there is no 

specific venue for publishing the result, and if the researcher 
thinks the result is important, then the researcher can avoid 
the so-called “file-drawer” problem by publishing the details 
of the research on his or her own website or in a general In-
ternet archive, perhaps announcing the publication in relevant 
email lists. This enables other interested researchers in the 
field to learn about the result. 

It is sensible for any researcher planning new research to 
search journals of negative results, research registries, and the 
Internet for similar research because the reports may contain 
useful information. 

Venues that report negative results receive less readership 
due to general lack of interest in negative results because most 
researchers don’t have enough time to read about all the pos-
itive results in their field, let alone the usually less-well-cu-
rated and generally less interesting negative results. Negative 
results are sometimes viewed as “failures”, and may be em-
barrassing to some researchers. (A researcher shouldn’t be 
embarrassed by a negative result because no researcher can 
expect that all his or her research hypotheses will be upheld.) 
And researchers usually get no reward for publishing a report 
of their negative results. So most researchers sensibly view it 
as a waste of time to prepare a proper report of a research pro-
ject that obtained a negative result, and thus they won’t spend 
the necessary time unless they are somehow coerced. Time 
will tell whether repositories of negative results are useful 
enough to justify their cost. 
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Appendix K: An Example of the Publication of an 
Important Negative Result 

As noted, scientific journals almost never publish reports 
of research that obtained a negative result because negative 
results are generally uninteresting. However, there are in-
structive exceptions when negative results are interesting and 
are therefore published in mainstream scientific journals. 

For example, the famous Michelson-Morley experiment 
in physics (1887) studied the relationship between the direc-
tion of light travel and the speed of light. This careful experi-
ment failed to find any good evidence of a relationship be-
tween the direction and the speed of light, which is a negative 
result that was surprising at the time of the research. 

The report of the negative result of the Michelson-Morley 
experiment was published (in the prestigious American Jour-
nal of Science) and was widely discussed. The result was im-
portant because the expected size of the expected effect (i.e., 
the difference in the speed of light as a function of direction 
of light travel) was known, which is unusual in scientific re-
search—we usually don’t know the expected effect size ahead 
of time. (It was possible to compute the minimum possible 
size of the effect from the speed of the earth in its orbit around 
the Sun.)  

The “failure” of the sufficiently powerful Michelson-Mor-
ley experiment to discover the expected relationship of the 
expected size between the direction and the speed of light 
helped physicists to rule out the possibility of the existence of 
a stationary “luminiferous ether” as a necessary medium for 
the transmission of light. (The ether was thought to be neces-
sary for the transmission of light, just as air, or some other 
gas, liquid, or solid, is a necessary medium for the transmis-
sion of sound—sound won’t travel through a vacuum, but 
light will.) Prior to the Michelson-Morley experiment, many 
physical scientists believed that the stationary ether probably 
existed, and was only waiting for someone to find good evi-
dence of it (Wikipedia contributors, 2017). 

The general point that we can take from the Michelson-
Morley experiment is that negative results are interesting if 
(a) a particular effect is expected by many researchers in a 
field, (b) the expected effect size is at least roughly known 
and (c) the research project is clearly powerful enough and 
carefully enough performed that it ought to detect an effect of 
the expected size, if such an effect is present. This case is rare 
in scientific research, but does occur. In this case, if the effect 
is important, then a report of a negative result in carefully per-
formed research will often be accepted for publication. Ji 
(2017) discusses a modern example. 

Appendix L: The Jeffreys-Lindley Paradox 
The posterior “probability” that the null hypothesis is true 

(as discussed in appendix F.5) leads to a puzzling paradox. To 
illustrate, consider the task of assessing from research data 
whether a regression coefficient in a model equation is differ-
ent from the null value of zero. Here, the sampling distribu-
tion of the parameter of interest is typically sensibly assumed 
to be a normal distribution with a mean of zero if the null hy-
pothesis is true, and with a mean that is different from zero if 

the null hypothesis is false. (In this case, for sensible technical 
reasons, we typically model the estimated sampling distribu-
tion of the parameter with Student’s t-distribution.)  

In this situation, the posterior “probability” that the null 
hypothesis is true is (like the associated p-value) a function of 
the relevant t-statistic. This function is derived under reason-
able assumptions by Berger and Sellke (1987, equation 1.1). 

It is of interest to study the relationship between the t-sta-
tistic and the posterior “probability” that the null hypothesis 
is true. Figure L.1 shows (for three different sample sizes) the 
relationship according to Berger and Sellke’s equation. The 
figure is based on the assumption that the prior probability 
that the research hypothesis is true is equal to the prior prob-
ability that the null hypothesis is true, and (because the two 
hypotheses are exhaustive) thus both prior probabilities are 
equal to 0.5. 

 
Figure L.1. The relationship between the posterior 
“probability” that the null hypothesis is true and the t-
statistic for three different sample sizes assuming that 
the prior probabilities that the research and null hy-
pothesis are true are both 0.5. The figure was gener-
ated using a formula given by Berger and Sellke (1987 
equation 1.1). The computer code to generate this fig-
ure (with an explanation of the logic) is available in 
the supplementary material for this paper. 

The figure shows that the Berger and Sellke formula be-
haves appropriately in the sense that the higher the value of 
the t-statistic is above zero (or the lower the value of the t-
statistic is below zero), the lower the “probability” that the 
null hypothesis is true, as we would expect. However, the for-
mula appears to behave inappropriately in the sense that for a 
given value of the t-statistic, the greater the sample size, the 
higher the “probability” that the null hypothesis is true. 

For example, the vertical line at 2 on the horizontal axis 
of the figure tells us that if the value of the t-statistic is 2.0 
and if the sample size is 30, then the “probability” that the null 
hypothesis is true is roughly 0.45. But if the value of the value 
of the t-statistic is 2.0 and the sample size is 100, then the 
“probability” that the null hypothesis is true is roughly 0.58. 
And if the value of the t-statistic is 2.0 and sample size is 500, 
then the “probability” that the null hypothesis is true is 
roughly 0.75. 
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These results are counterintuitive because we would think 
that for a given value of the t-statistic (i.e., a given standard-
ized distance of a parameter estimate from the null value), the 
larger the sample size, the more evidence we have that the null 
hypothesis is false. But the figure is showing that for a given 
value of the t-statistic, the larger the sample size, the more 
evidence we have that the null hypothesis is true. 

The idea that for a given value of the t-statistic, a larger 
sample should give us more evidence that the null hypothesis 
is false is derived from the law of large numbers. This law 
implies that the larger the sample, the closer we can expect 
(on average) the standardized parameter value estimated from 
the sample data (i.e., the t-statistic in the present case) to be 
to the correct value of the parameter in the entire population. 
This, in turn, implies that, for a larger sample, the distance of 
the parameter estimate from the null value is a more reliable 
estimate of the true value of this distance in the population. 
But if for a larger sample we have a more reliable estimate of 
the value of the parameter, and if this estimate is different 
from the null value, then this should cause the “probability” 
that the null hypothesis is true to be somewhat lower, not 
higher, than for a smaller sample. 

The puzzling result illustrated by the figure is an example 
of the “Jeffreys-Lindley paradox”, which Berger and Sellke 
(1987) discuss in the context of their equation 1.1 that was 
used to generate the figure. However, despite the many pub-
lished “explanations” of the Jeffreys-Lindley paradox, the 
fact that the posterior “probability” that the null hypothesis is 
true is a counterintuitive increasing function of the sample 
size for a given value of the t-statistic suggests that this phe-
nomenon isn’t merely a “paradox”, but is a contradiction. 
This apparent contradiction tells us that something is wrong 
here because the probabilities are misbehaving. This raises the 
question whether the posterior “probability” that the null hy-
pothesis is true is scientifically meaningful. The paradox also 
raises the parallel question of whether the Bayes factor is sci-
entifically meaningful because the posterior “probability” that 
the null hypothesis is true is derived directly from the Bayes 
factor. 

This paradox or contradiction is also illustrated in an arti-
cle by Held and Ott (2016). Their figure 2 shows that for a 
given effect size (as approximately reflected in the associated 
p-value) a smaller sample consistently gives a lower Bayes 
factor, implying that for the same effect size a smaller sample 
gives us greater evidence that the null hypothesis is false, 
which is counterintuitive. 

(Held and Ott work with Bayes factors that are the inverse 
of the standard Bayes factor. The sample size is involved in 
the computation of the p-values in the Held and Ott figure 2, 
but in the case of the p-values a smaller sample gives less 
weight of evidence, not greater, so this point can’t somehow 
negate the points in the preceding paragraph.) 

Interestingly, the apparent contradiction behind the Jef-
freys-Lindley paradox doesn’t rule out the use of the posterior 
“probability” that the null hypothesis is true as a measure of 
the weight of evidence that an effect is real. However, the ap-
parent contradiction makes interpretation of the measure more 
complicated because if we wish to satisfy the sensible goal of 
controlling the rate of false-positive errors, then (at least in 

theory—the effect may sometimes be small) we would need 
to use different critical values for the posterior probability that 
the null hypothesis is true depending on the sample size. 

Appendix M: Computer Programs 
This computer programs that were used to generate the 

figures in the earlier appendices are available in the Supple-
mentary Information for this paper on the journal’s website.  
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